These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 27548153)
1. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation. Estevam-Alves R; Ferreira PH; Coatrini AC; Oliveira ON; Fontana CR; Mendonca CR Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548153 [TBL] [Abstract][Full Text] [Related]
2. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Tan H; Peng Z; Li Q; Xu X; Guo S; Tang T Biomaterials; 2012 Jan; 33(2):365-77. PubMed ID: 22014946 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling. Valle J; Burgui S; Langheinrich D; Gil C; Solano C; Toledo-Arana A; Helbig R; Lasagni A; Lasa I Macromol Biosci; 2015 Aug; 15(8):1060-9. PubMed ID: 25914260 [TBL] [Abstract][Full Text] [Related]
4. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. Lv H; Chen Z; Yang X; Cen L; Zhang X; Gao P J Dent; 2014 Nov; 42(11):1464-72. PubMed ID: 24930872 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation. Gallarato LA; Mulko LE; Dardanelli MS; Barbero CA; Acevedo DF; Yslas EI Colloids Surf B Biointerfaces; 2017 Feb; 150():1-7. PubMed ID: 27863264 [TBL] [Abstract][Full Text] [Related]
6. Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes. Follmann HD; Martins AF; Gerola AP; Burgo TA; Nakamura CV; Rubira AF; Muniz EC Biomacromolecules; 2012 Nov; 13(11):3711-22. PubMed ID: 22998803 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus. Huang J; Liu Y; Yang L; Zhou F Int J Biol Macromol; 2019 May; 129():980-988. PubMed ID: 30772414 [TBL] [Abstract][Full Text] [Related]
8. Layer-by-layer assembly of chitosan and recombinant biopolymers into biomimetic coatings with multiple stimuli-responsive properties. Costa RR; Custódio CA; Arias FJ; Rodríguez-Cabello JC; Mano JF Small; 2011 Sep; 7(18):2640-9. PubMed ID: 21809443 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Kara F; Aksoy EA; Yuksekdag Z; Hasirci N; Aksoy S Carbohydr Polym; 2014 Nov; 112():39-47. PubMed ID: 25129714 [TBL] [Abstract][Full Text] [Related]
10. Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Hernandez-Montelongo J; Lucchesi EG; Gonzalez I; Macedo WAA; Nascimento VF; Moraes AM; Beppu MM; Cotta MA Colloids Surf B Biointerfaces; 2016 May; 141():499-506. PubMed ID: 26896656 [TBL] [Abstract][Full Text] [Related]
13. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Xu LC; Siedlecki CA Biomed Mater; 2014 Jun; 9(3):035003. PubMed ID: 24687453 [TBL] [Abstract][Full Text] [Related]
14. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Nan L; Yang K; Ren G Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():356-61. PubMed ID: 25842145 [TBL] [Abstract][Full Text] [Related]
15. N-halamine-based chitosan: preparation, characterization, and antimicrobial function. Cao Z; Sun Y J Biomed Mater Res A; 2008 Apr; 85(1):99-107. PubMed ID: 17688258 [TBL] [Abstract][Full Text] [Related]
16. A new route for chitosan immobilization onto polyethylene surface. Popelka A; Novák I; Lehocký M; Junkar I; Mozetič M; Kleinová A; Janigová I; Slouf M; Bílek F; Chodák I Carbohydr Polym; 2012 Nov; 90(4):1501-8. PubMed ID: 22944408 [TBL] [Abstract][Full Text] [Related]
17. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers. Kruszewski KM; Nistico L; Longwell MJ; Hynes MJ; Maurer JA; Hall-Stoodley L; Gawalt ES Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2059-69. PubMed ID: 23498233 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Elchinger PH; Delattre C; Faure S; Roy O; Badel S; Bernardi T; Taillefumier C; Michaud P Int J Biol Macromol; 2015 Jan; 72():1063-8. PubMed ID: 25451753 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic insights into response of Staphylococcus aureus to bioelectric effect on polypyrrole/chitosan film. Zhang J; Neoh KG; Hu X; Kang ET Biomaterials; 2014 Sep; 35(27):7690-8. PubMed ID: 24934644 [TBL] [Abstract][Full Text] [Related]
20. Bioselective and Radiopaque Zinc-Biopolymeric Complex-Based Porous Biomaterials Promote Mammalian Tissue Ingrowth In Vivo While Inhibiting Microbial Biofilm Gene Expression and Biofilm Formation. Mishra AH; Mohan S; Gutti P; Krishna S; Sundaraman S; Chakraborti S; Jaiswal AK; Nambi Raj NA; Mishra D ACS Appl Bio Mater; 2024 Jun; 7(6):3701-3713. PubMed ID: 38748449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]