BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 27548226)

  • 21. Non-coding RNAs: an emerging player in DNA damage response.
    Zhang C; Peng G
    Mutat Res Rev Mutat Res; 2015; 763():202-11. PubMed ID: 25795121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting the microRNA-regulating DNA damage/repair pathways in cancer.
    Bottai G; Pasculli B; Calin GA; Santarpia L
    Expert Opin Biol Ther; 2014 Nov; 14(11):1667-83. PubMed ID: 25190496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.
    Boyer AS; Walter D; Sørensen CS
    Semin Cancer Biol; 2016 Jun; 37-38():16-25. PubMed ID: 26805514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases.
    Chen MK; Hung MC
    Am J Cancer Res; 2016; 6(4):827-42. PubMed ID: 27186434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA Polymerase Eta Prevents Tumor Cell-Cycle Arrest and Cell Death during Recovery from Replication Stress.
    Barnes RP; Tsao WC; Moldovan GL; Eckert KA
    Cancer Res; 2018 Dec; 78(23):6549-6560. PubMed ID: 30297532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status.
    Klammer H; Mladenov E; Li F; Iliakis G
    Cancer Lett; 2015 Jan; 356(1):58-71. PubMed ID: 24370566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA damage in cancer therapeutics: a boon or a curse?
    Khanna A
    Cancer Res; 2015 Jun; 75(11):2133-8. PubMed ID: 25931285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies.
    Davalli P; Marverti G; Lauriola A; D'Arca D
    Oxid Med Cell Longev; 2018; 2018():2389523. PubMed ID: 29770165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncoupling fork speed and origin activity to identify the primary cause of replicative stress phenotypes.
    Rodriguez-Acebes S; Mourón S; Méndez J
    J Biol Chem; 2018 Aug; 293(33):12855-12861. PubMed ID: 29959228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constitutive overexpression of CDC25A in primary human mammary epithelial cells results in both defective DNA damage response and chromosomal breaks at fragile sites.
    Cangi MG; Piccinin S; Pecciarini L; Talarico A; Dal Cin E; Grassi S; Grizzo A; Maestro R; Doglioni C
    Int J Cancer; 2008 Sep; 123(6):1466-71. PubMed ID: 18566993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting DNA Replication Stress and DNA Double-Strand Break Repair for Optimizing SCLC Treatment.
    Bian X; Lin W
    Cancers (Basel); 2019 Sep; 11(9):. PubMed ID: 31480716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection.
    Verhalen B; Justice JL; Imperiale MJ; Jiang M
    J Virol; 2015 May; 89(9):5032-9. PubMed ID: 25694603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Why Human Papillomaviruses Activate the DNA Damage Response (DDR) and How Cellular and Viral Replication Persists in the Presence of DDR Signaling.
    Bristol ML; Das D; Morgan IM
    Viruses; 2017 Sep; 9(10):. PubMed ID: 28934154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleolar protein nucleolin functions in replication stress-induced DNA damage responses.
    Kawamura K; Qi F; Meng Q; Hayashi I; Kobayashi J
    J Radiat Res; 2019 May; 60(3):281-288. PubMed ID: 30839063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of replication fork speed: Mechanisms and impact on genomic stability.
    Merchut-Maya JM; Bartek J; Maya-Mendoza A
    DNA Repair (Amst); 2019 Sep; 81():102654. PubMed ID: 31320249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence.
    Graziano S; Johnston R; Deng O; Zhang J; Gonzalo S
    Oncogene; 2016 Oct; 35(41):5362-5376. PubMed ID: 27041576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Ubiquitin Proteasome System in Genome Stability and Cancer.
    Morgan JJ; Crawford LJ
    Cancers (Basel); 2021 May; 13(9):. PubMed ID: 34066546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knockdown of RMI1 impairs DNA repair under DNA replication stress.
    Xu C; Fang L; Kong Y; Xiao C; Yang M; Du LQ; Liu Q
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):158-164. PubMed ID: 29042194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomarkers of Response and Resistance to DNA Repair Targeted Therapies.
    Stover EH; Konstantinopoulos PA; Matulonis UA; Swisher EM
    Clin Cancer Res; 2016 Dec; 22(23):5651-5660. PubMed ID: 27678458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response.
    Yue X; Bai C; Xie D; Ma T; Zhou PK
    Front Genet; 2020; 11():607428. PubMed ID: 33424929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.