These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27548476)

  • 41. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.
    Kanyanta V; Ivankovic A; Karac A
    J Biomech; 2009 Aug; 42(11):1705-12. PubMed ID: 19482285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments.
    Chaniotis AK; Kaiktsis L; Katritsis D; Efstathopoulos E; Pantos I; Marmarellis V
    Phys Med; 2010; 26(3):140-56. PubMed ID: 20400349
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Particulate suspension model for blood flow under external body acceleration.
    Srivastava LM; Edemeka UE; Srivastava VP
    Int J Biomed Comput; 1994 Oct; 37(2):113-29. PubMed ID: 7705892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical investigation of non-Newtonian blood flow within an artery with cone shape of stenosis in various stenosis angles.
    Yan SR; Zarringhalam M; Toghraie D; Foong LK; Talebizadehsardari P
    Comput Methods Programs Biomed; 2020 Aug; 192():105434. PubMed ID: 32182442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of physiological and simple pulsatile flows through stenosed arteries.
    Zendehbudi GR; Moayeri MS
    J Biomech; 1999 Sep; 32(9):959-65. PubMed ID: 10460133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model.
    Faraji A; Sahebi M; SalavatiDezfouli S
    Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative study of Newtonian and non-Newtonian simulations of drug transport in a model drug-eluting stent.
    Wang Z; Sun A; Fan Y; Deng X
    Biorheology; 2012; 49(4):249-59. PubMed ID: 22836079
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulation of cardiac motion on non-Newtonian, pulsating flow development in the human left anterior descending coronary artery.
    Theodorakakos A; Gavaises M; Andriotis A; Zifan A; Liatsis P; Pantos I; Efstathopoulos EP; Katritsis D
    Phys Med Biol; 2008 Sep; 53(18):4875-92. PubMed ID: 18711245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical investigation of blood flow in a sequential aorto-coronary bypass graft model.
    S M; Ghista DN; Chua LP; Seng TY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():875-8. PubMed ID: 17945605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels.
    Passerini T; Quaini A; Villa U; Veneziani A; Canic S
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1192-213. PubMed ID: 23798339
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling blood flow in coronary arteries: Newtonian or shear-thinning non-Newtonian rheology?
    De Nisco G; Lodi Rizzini M; Verardi R; Chiastra C; Candreva A; De Ferrari G; D'Ascenzo F; Gallo D; Morbiducci U
    Comput Methods Programs Biomed; 2023 Dec; 242():107823. PubMed ID: 37757568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An in vitro test bench reproducing coronary blood flow signals.
    ChodzyƄski KJ; Boudjeltia KZ; Lalmand J; Aminian A; Vanhamme L; de Sousa DR; Gremmo S; Bricteux L; Renotte C; Courbebaisse G; Coussement G
    Biomed Eng Online; 2015 Aug; 14():77. PubMed ID: 26250420
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling and simulation of pulsatile blood flow with a physiologic wave pattern.
    Marques PF; Oliveira ME; Franca AS; Pinotti M
    Artif Organs; 2003 May; 27(5):478-85. PubMed ID: 12752213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Haemodynamic analysis of coronary artery bypass grafting in a non-linear deformable artery and Newtonian pulsatile blood flow.
    Kouhi E; Morsi YS; Masood SH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1273-87. PubMed ID: 19143420
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blood flow and macromolecular transport in complex blood vessels.
    Hong J; Wei L; Fu C; Tan W
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S125-9. PubMed ID: 17767985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.