These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 27548565)

  • 1. H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development.
    Rogawski DS; Grembecka J; Cierpicki T
    Future Med Chem; 2016 Sep; 8(13):1589-607. PubMed ID: 27548565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy.
    Ma S; Long G; Jiang Z; Zhang Y; Sun L; Pan Y; You Q; Guo X
    Eur J Med Chem; 2024 Aug; 274():116532. PubMed ID: 38805937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective inhibitors of protein methyltransferases.
    Kaniskan HÜ; Konze KD; Jin J
    J Med Chem; 2015 Feb; 58(4):1596-629. PubMed ID: 25406853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recently discovered EZH2 and EHMT2 (G9a) inhibitors.
    Soumyanarayanan U; Dymock BW
    Future Med Chem; 2016 Sep; 8(13):1635-54. PubMed ID: 27548656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the Nuclear Receptor-Binding SET Domain Family of Histone Lysine Methyltransferases for Cancer Therapy: Recent Progress and Perspectives.
    Shrestha A; Kim N; Lee SJ; Jeon YH; Song JJ; An H; Cho SJ; Kadayat TM; Chin J
    J Med Chem; 2021 Oct; 64(20):14913-14929. PubMed ID: 34488340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting histone methyltransferase EZH2 as cancer treatment.
    Kondo Y
    J Biochem; 2014 Nov; 156(5):249-57. PubMed ID: 25179367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-guided DOT1L probe optimization by label-free ligand displacement.
    Yi JS; Federation AJ; Qi J; Dhe-Paganon S; Hadler M; Xu X; St Pierre R; Varca AC; Wu L; Marineau JJ; Smith WB; Souza A; Chory EJ; Armstrong SA; Bradner JE
    ACS Chem Biol; 2015 Mar; 10(3):667-74. PubMed ID: 25397901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small molecule KDM4s inhibitors as anti-cancer agents.
    Lin H; Li Q; Li Q; Zhu J; Gu K; Jiang X; Hu Q; Feng F; Qu W; Chen Y; Sun H
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):777-793. PubMed ID: 29651880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer treatment of the future: inhibitors of histone methyltransferases.
    Spannhoff A; Sippl W; Jung M
    Int J Biochem Cell Biol; 2009 Jan; 41(1):4-11. PubMed ID: 18773966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using 'biased-privileged' scaffolds to identify lysine methyltransferase inhibitors.
    Kashyap S; Sandler J; Peters U; Martinez EJ; Kapoor TM
    Bioorg Med Chem; 2014 Apr; 22(7):2253-60. PubMed ID: 24650704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of histone lysine methyltransferases G9a and GLP by ejection of structural Zn(II).
    Lenstra DC; Al Temimi AHK; Mecinović J
    Bioorg Med Chem Lett; 2018 Apr; 28(7):1234-1238. PubMed ID: 29519735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy.
    Morera L; Lübbert M; Jung M
    Clin Epigenetics; 2016; 8():57. PubMed ID: 27222667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual screening and biological evaluation of novel small molecular inhibitors against protein arginine methyltransferase 1 (PRMT1).
    Xie Y; Zhou R; Lian F; Liu Y; Chen L; Shi Z; Zhang N; Zheng M; Shen B; Jiang H; Liang Z; Luo C
    Org Biomol Chem; 2014 Dec; 12(47):9665-73. PubMed ID: 25348815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural diversity of the epigenetics pocketome.
    Cabaye A; Nguyen KT; Liu L; Pande V; Schapira M
    Proteins; 2015 Jul; 83(7):1316-26. PubMed ID: 25974248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1.
    Bissinger EM; Heinke R; Spannhoff A; Eberlin A; Metzger E; Cura V; Hassenboehler P; Cavarelli J; Schüle R; Bedford MT; Sippl W; Jung M
    Bioorg Med Chem; 2011 Jun; 19(12):3717-31. PubMed ID: 21440447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When will small molecule lactate dehydrogenase inhibitors realize their potential in the cancer clinic?
    Rani R; Kumar V
    Future Med Chem; 2017 Jul; 9(11):1113-1115. PubMed ID: 28722474
    [No Abstract]   [Full Text] [Related]  

  • 17. Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends.
    Fabini E; Manoni E; Ferroni C; Rio AD; Bartolini M
    Future Med Chem; 2019 Apr; 11(8):901-921. PubMed ID: 30998113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Proteome Profiling and Bioimaging Applications of Small-Molecule Affinity-Based Probes Derived From DOT1L Inhibitors.
    Zhu B; Zhang H; Pan S; Wang C; Ge J; Lee JS; Yao SQ
    Chemistry; 2016 Jun; 22(23):7824-36. PubMed ID: 27115831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting components of epigenome by small molecules.
    You JS; Han JH
    Arch Pharm Res; 2014 Nov; 37(11):1367-74. PubMed ID: 25070764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Assays of Inhibitors of Methyltransferases.
    Cai XC; Kapilashrami K; Luo M
    Methods Enzymol; 2016; 574():245-308. PubMed ID: 27423865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.