These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27548587)

  • 1. Au-HKUST-1 Composite Nanocapsules: Synthesis with a Coordination Replication Strategy and Catalysis on CO Oxidation.
    Liu Y; Zhang J; Song L; Xu W; Guo Z; Yang X; Wu X; Chen X
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22745-50. PubMed ID: 27548587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu
    Liu Y; Liu T; Tian L; Zhang L; Yao L; Tan T; Xu J; Han X; Liu D; Wang C
    Nanoscale; 2016 Dec; 8(45):19075-19085. PubMed ID: 27824196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Integrated Cu
    Zhan G; Fan L; Zhou S; Yang X
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35234-35243. PubMed ID: 30232888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu
    Lee SW; Hong JW; Lee H; Wi DH; Kim SM; Han SW; Park JY
    Nanoscale; 2018 Jun; 10(23):10835-10843. PubMed ID: 29694476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ TEM observation of Au-Cu
    Chen FC; Chen JY; Lin YH; Kuo MY; Hsu YJ; Wu WW
    Nanoscale; 2019 May; 11(21):10486-10492. PubMed ID: 31112184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core-shell nanoreactors for gas sensor applications.
    Majhi SM; Rai P; Raj S; Chon BS; Park KK; Yu YT
    ACS Appl Mater Interfaces; 2014 May; 6(10):7491-7. PubMed ID: 24779525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.
    Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK
    Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu
    Chen S; Liu P; Su K; Li X; Qin Z; Xu W; Chen J; Li C; Qiu J
    Biosens Bioelectron; 2018 Jan; 99():338-345. PubMed ID: 28800505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive amperometric immunosensor for PSA detection based on Cu
    Li F; Li Y; Feng J; Dong Y; Wang P; Chen L; Chen Z; Liu H; Wei Q
    Biosens Bioelectron; 2017 Jan; 87():630-637. PubMed ID: 27619526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositions, structures, and catalytic activities of CeO₂@Cu₂O nanocomposites prepared by the template-assisted method.
    Bao H; Zhang Z; Hua Q; Huang W
    Langmuir; 2014 Jun; 30(22):6427-36. PubMed ID: 24827164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS study of surface plasmon resonance induced carrier movement in Au@Cu
    Chen L; Zhang F; Deng XY; Xue X; Wang L; Sun Y; Feng JD; Zhang Y; Wang Y; Jung YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():608-612. PubMed ID: 28886507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu
    Yang Y; Yan Q; Liu Q; Li Y; Liu H; Wang P; Chen L; Zhang D; Li Y; Dong Y
    Biosens Bioelectron; 2018 Jan; 99():450-457. PubMed ID: 28820986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Synthesis of Au@AgAu Yolk-Shell Cuboctahedra with Well-Defined Facets.
    Londono-Calderon A; Bahena D; Yacaman MJ
    Langmuir; 2016 Aug; 32(30):7572-81. PubMed ID: 27385583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic reduction of triclosan on Au-Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation.
    Niu J; Dai Y; Yin L; Shang J; Crittenden JC
    Phys Chem Chem Phys; 2015 Jul; 17(26):17421-8. PubMed ID: 26076905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol.
    Fan CM; Zhang LF; Wang SS; Wang DH; Lu LQ; Xu AW
    Nanoscale; 2012 Nov; 4(21):6835-40. PubMed ID: 23023220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.
    Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J
    Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au@Cu2O stellated polytope with core-shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes.
    Wu X; Cai J; Li S; Zheng F; Lai Z; Zhu L; Chen T
    J Colloid Interface Sci; 2016 May; 469():138-146. PubMed ID: 26874979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye.
    Yao T; Cui T; Wang H; Xu L; Cui F; Wu J
    Nanoscale; 2014 Jul; 6(13):7666-74. PubMed ID: 24899540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] nanocomposites: formation, characterization and catalytic performance in partial ethanol oxidation.
    Khanderi J; Contiu C; Engstler J; Hoffmann RC; Schneider JJ; Drochner A; Vogel H
    Nanoscale; 2011 Mar; 3(3):1102-12. PubMed ID: 21183989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.