These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27549201)

  • 1. Energetics of Sensing and Communication in Electric Fish: A Blessing and a Curse in the Anthropocene?
    Markham MR; Ban Y; McCauley AG; Maltby R
    Integr Comp Biol; 2016 Nov; 56(5):889-900. PubMed ID: 27549201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosensory and metabolic responses of weakly electric fish to changing water conductivity.
    Wiser SD; Markham MR
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38712896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroreception, electrogenesis and electric signal evolution.
    Crampton WGR
    J Fish Biol; 2019 Jul; 95(1):92-134. PubMed ID: 30729523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of normoxia exposure on hypoxia tolerance and sensory sampling in a swamp-dwelling mormyrid fish.
    Clarke SB; Chapman LJ; Krahe R
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Feb; 240():110586. PubMed ID: 31648062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.
    Salazar VL; Krahe R; Lewis JE
    J Exp Biol; 2013 Jul; 216(Pt 13):2459-68. PubMed ID: 23761471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish.
    Sinnett PM; Markham MR
    Horm Behav; 2015 May; 71():31-40. PubMed ID: 25870018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.
    Tian R; Losilla M; Lu Y; Yang G; Zakon H
    BMC Evol Biol; 2017 Feb; 17(1):51. PubMed ID: 28193153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistics of Natural Communication Signals Observed in the Wild Identify Important Yet Neglected Stimulus Regimes in Weakly Electric Fish.
    Henninger J; Krahe R; Kirschbaum F; Grewe J; Benda J
    J Neurosci; 2018 Jun; 38(24):5456-5465. PubMed ID: 29735558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory Specializations of Mormyrid Fish Are Associated with Species Differences in Electric Signal Localization Behavior.
    Vélez A; Ryoo DY; Carlson BA
    Brain Behav Evol; 2018; 92(3-4):125-141. PubMed ID: 30820010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric-Color Sensing in Weakly Electric Fish Suggests Color Perception as a Sensory Concept beyond Vision.
    Gottwald M; Singh N; Haubrich AN; Regett S; von der Emde G
    Curr Biol; 2018 Nov; 28(22):3648-3653.e2. PubMed ID: 30416061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the mechanisms of neuronal processing from electric fish.
    Zakon HH
    Curr Opin Neurobiol; 2003 Dec; 13(6):744-50. PubMed ID: 14662377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic cost of communication.
    Stoddard PK; Salazar VL
    J Exp Biol; 2011 Jan; 214(Pt 2):200-5. PubMed ID: 21177941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes.
    Lavoué S; Miya M; Arnegard ME; Sullivan JP; Hopkins CD; Nishida M
    PLoS One; 2012; 7(5):e36287. PubMed ID: 22606250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hypoxia on swimming and sensing in a weakly electric fish.
    Ackerly KL; Krahe R; Sanford CP; Chapman LJ
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30018158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypoxia on aerobic metabolism and active electrosensory acquisition in the African weakly electric fish Marcusenius victoriae.
    Moulton TL; Chapman LJ; Krahe R
    J Fish Biol; 2020 Feb; 96(2):496-505. PubMed ID: 31845335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes.
    Elbassiouny AA; Lovejoy NR; Chang BSW
    Philos Trans R Soc Lond B Biol Sci; 2020 Jan; 375(1790):20190179. PubMed ID: 31787042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design features for electric communication.
    Hopkins CD
    J Exp Biol; 1999 May; 202(Pt 10):1217-28. PubMed ID: 10210663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disembodying the invisible: electrocommunication and social interactions by passive reception of a moving playback signal.
    Worm M; Kirschbaum F; von der Emde G
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.