These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27549201)

  • 21. Peripheral sensory coding through oscillatory synchrony in weakly electric fish.
    Baker CA; Huck KR; Carlson BA
    Elife; 2015 Aug; 4():e08163. PubMed ID: 26238277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular evolution of communication signals in electric fish.
    Zakon HH; Zwickl DJ; Lu Y; Hillis DM
    J Exp Biol; 2008 Jun; 211(Pt 11):1814-8. PubMed ID: 18490397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural circuitry for communication and jamming avoidance in gymnotiform electric fish.
    Metzner W
    J Exp Biol; 1999 May; 202(Pt 10):1365-75. PubMed ID: 10210677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.
    Hofmann V; Sanguinetti-Scheck JI; Künzel S; Geurten B; Gómez-Sena L; Engelmann J
    J Exp Biol; 2013 Jul; 216(Pt 13):2487-500. PubMed ID: 23761474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs.
    Kelly M; Babineau D; Longtin A; Lewis JE
    Biol Cybern; 2008 Jun; 98(6):479-90. PubMed ID: 18491161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predation enhances complexity in the evolution of electric fish signals.
    Stoddard PK
    Nature; 1999 Jul; 400(6741):254-6. PubMed ID: 10421365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Communication with self, friends and foes in active-sensing animals.
    Jones TK; Allen KM; Moss CF
    J Exp Biol; 2021 Nov; 224(22):. PubMed ID: 34752625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen consumption in weakly electric Neotropical fishes.
    Julian D; Crampton WG; Wohlgemuth SE; Albert JS
    Oecologia; 2003 Dec; 137(4):502-11. PubMed ID: 14505027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes.
    Schumacher EL; Carlson BA
    Elife; 2022 Jun; 11():. PubMed ID: 35713403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensory hyperacuity in the jamming avoidance response of weakly electric fish.
    Kawasaki M
    Curr Opin Neurobiol; 1997 Aug; 7(4):473-9. PubMed ID: 9287195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems.
    von der Emde G; Amey M; Engelmann J; Fetz S; Folde C; Hollmann M; Metzen M; Pusch R
    J Physiol Paris; 2008; 102(4-6):279-90. PubMed ID: 18992334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Food restriction promotes signaling effort in response to social challenge in a short-lived electric fish.
    Gavassa S; Stoddard PK
    Horm Behav; 2012 Sep; 62(4):381-8. PubMed ID: 22801246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational modeling of electric imaging in weakly electric fish: insights for physiology, behavior and evolution.
    Gómez-Sena L; Pedraja F; Sanguinetti-Scheck JI; Budelli R
    J Physiol Paris; 2014; 108(2-3):112-28. PubMed ID: 25245199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Independent evolution of visual and electrosensory specializations in different lineages of mormyrid electric fishes.
    Stevens JA; Sukhum KV; Carlson BA
    Brain Behav Evol; 2013; 82(3):185-98. PubMed ID: 24192131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences.
    Shumway CA
    J Neurosci; 1989 Dec; 9(12):4388-99. PubMed ID: 2593005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory cues for the gradual frequency fall responses of the gymnotiform electric fish, Rhamphichthys rostratus.
    Kawasaki M; Prather J; Guo YX
    J Comp Physiol A; 1996 Apr; 178(4):453-62. PubMed ID: 8847661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.