These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 27549395)

  • 61. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling.
    Aragón E; Wang Q; Zou Y; Morgani SM; Ruiz L; Kaczmarska Z; Su J; Torner C; Tian L; Hu J; Shu W; Agrawal S; Gomes T; Márquez JA; Hadjantonakis AK; Macias MJ; Massagué J
    Genes Dev; 2019 Nov; 33(21-22):1506-1524. PubMed ID: 31582430
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Analysis of transforming growth factor β signaling in chronic rhinosinusitis.
    Li YC; An YS; Wang T; Zang HR
    Chin Med J (Engl); 2013; 126(17):3340-3. PubMed ID: 24033961
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The endogenous ratio of Smad2 and Smad3 influences the cytostatic function of Smad3.
    Kim SG; Kim HA; Jong HS; Park JH; Kim NK; Hong SH; Kim TY; Bang YJ
    Mol Biol Cell; 2005 Oct; 16(10):4672-83. PubMed ID: 16093355
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells.
    Yang J; Wahdan-Alaswad R; Danielpour D
    Cancer Res; 2009 Mar; 69(6):2185-90. PubMed ID: 19276350
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Platelet-Derived TGF-β Induces Tissue Factor Expression via the Smad3 Pathway in Osteosarcoma Cells.
    Saito M; Ichikawa J; Ando T; Schoenecker JG; Ohba T; Koyama K; Suzuki-Inoue K; Haro H
    J Bone Miner Res; 2018 Nov; 33(11):2048-2058. PubMed ID: 29949655
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of novel Smad2 and Smad3 associated proteins in response to TGF-beta1.
    Brown KA; Ham AJ; Clark CN; Meller N; Law BK; Chytil A; Cheng N; Pietenpol JA; Moses HL
    J Cell Biochem; 2008 Oct; 105(2):596-611. PubMed ID: 18729074
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells.
    Ikezaki M; Higashimoto N; Matsumura K; Ihara Y
    Biochem Biophys Res Commun; 2016 Aug; 477(3):448-53. PubMed ID: 27320859
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Indole-derived compound SIS3 targets a subset of activated Smad complexes.
    Itoh Y; Sawaguchi T; Fu H; Omata C; Saitoh M; Miyazawa K
    J Biochem; 2023 Mar; 173(4):283-291. PubMed ID: 36539324
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Graded Smad2/3 activation is converted directly into levels of target gene expression in embryonic stem cells.
    Guzman-Ayala M; Lee KL; Mavrakis KJ; Goggolidou P; Norris DP; Episkopou V
    PLoS One; 2009; 4(1):e4268. PubMed ID: 19172185
    [TBL] [Abstract][Full Text] [Related]  

  • 70. p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity.
    Wendt MK; Smith JA; Schiemann WP
    J Biol Chem; 2009 Dec; 284(49):34145-56. PubMed ID: 19822523
    [TBL] [Abstract][Full Text] [Related]  

  • 71. TGF-β/Smad2/3 signaling directly regulates several miRNAs in mouse ES cells and early embryos.
    Redshaw N; Camps C; Sharma V; Motallebipour M; Guzman-Ayala M; Oikonomopoulos S; Thymiakou E; Ragoussis J; Episkopou V
    PLoS One; 2013; 8(1):e55186. PubMed ID: 23390484
    [TBL] [Abstract][Full Text] [Related]  

  • 72. TGF-β1 signaling is essential for tissue regeneration in the Xenopus tadpole tail.
    Nakamura M; Yoshida H; Moriyama Y; Kawakita I; Wlizla M; Takebayashi-Suzuki K; Horb ME; Suzuki A
    Biochem Biophys Res Commun; 2021 Aug; 565():91-96. PubMed ID: 34102475
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.
    Guo X; Ramirez A; Waddell DS; Li Z; Liu X; Wang XF
    Genes Dev; 2008 Jan; 22(1):106-20. PubMed ID: 18172167
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dynamic expression of two thrombospondins during axolotl limb regeneration.
    Whited JL; Lehoczky JA; Austin CA; Tabin CJ
    Dev Dyn; 2011 May; 240(5):1249-58. PubMed ID: 21360624
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differential effects of Smad2 and Smad3 in regulation of macrophage phenotype and function in the infarcted myocardium.
    Chen B; Li R; Hernandez SC; Hanna A; Su K; Shinde AV; Frangogiannis NG
    J Mol Cell Cardiol; 2022 Oct; 171():1-15. PubMed ID: 35780861
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Neural control of growth and size in the axolotl limb regenerate.
    Wells KM; Kelley K; Baumel M; Vieira WA; McCusker CD
    Elife; 2021 Nov; 10():. PubMed ID: 34779399
    [TBL] [Abstract][Full Text] [Related]  

  • 77. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs.
    Guimond JC; Lévesque M; Michaud PL; Berdugo J; Finnson K; Philip A; Roy S
    BMC Dev Biol; 2010 Feb; 10():15. PubMed ID: 20152028
    [TBL] [Abstract][Full Text] [Related]  

  • 78. BMP signaling is essential for sustaining proximo-distal progression in regenerating axolotl limbs.
    Vincent E; Villiard E; Sader F; Dhakal S; Kwok BH; Roy S
    Development; 2020 Jul; 147(14):. PubMed ID: 32665245
    [TBL] [Abstract][Full Text] [Related]  

  • 79. TNAP limits TGF-β-dependent cardiac and skeletal muscle fibrosis by inactivating the SMAD2/3 transcription factors.
    Arnò B; Galli F; Roostalu U; Aldeiri BM; Miyake T; Albertini A; Bragg L; Prehar S; McDermott JC; Cartwright EJ; Cossu G
    J Cell Sci; 2019 Aug; 132(15):. PubMed ID: 31289197
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Retinoid antagonists inhibit normal patterning during limb regeneration in the axolotl, Ambystoma mexicanum.
    Del Rincón SV; Scadding SR
    J Exp Zool; 2002 Apr; 292(5):435-43. PubMed ID: 11857478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.