These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 27549437)
1. Pseudomonas fluorescens C7R12 type III secretion system impacts mycorrhization of Medicago truncatula and associated microbial communities. Viollet A; Pivato B; Mougel C; Cleyet-Marel JC; Gubry-Rangin C; Lemanceau P; Mazurier S Mycorrhiza; 2017 Jan; 27(1):23-33. PubMed ID: 27549437 [TBL] [Abstract][Full Text] [Related]
2. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. Viollet A; Corberand T; Mougel C; Robin A; Lemanceau P; Mazurier S FEMS Microbiol Ecol; 2011 Mar; 75(3):457-67. PubMed ID: 21204867 [TBL] [Abstract][Full Text] [Related]
3. Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. Pivato B; Gamalero E; Lemanceau P; Berta G FEMS Microbiol Lett; 2008 Dec; 289(2):173-80. PubMed ID: 19016872 [TBL] [Abstract][Full Text] [Related]
4. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Pivato B; Offre P; Marchelli S; Barbonaglia B; Mougel C; Lemanceau P; Berta G Mycorrhiza; 2009 Feb; 19(2):81-90. PubMed ID: 18941805 [TBL] [Abstract][Full Text] [Related]
5. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
6. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Gamalero E; Trotta A; Massa N; Copetta A; Martinotti MG; Berta G Mycorrhiza; 2004 Jul; 14(3):185-92. PubMed ID: 15197635 [TBL] [Abstract][Full Text] [Related]
7. Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Sanchez L; Weidmann S; Arnould C; Bernard AR; Gianinazzi S; Gianinazzi-Pearson V Plant Physiol; 2005 Oct; 139(2):1065-77. PubMed ID: 16183836 [TBL] [Abstract][Full Text] [Related]
8. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. Fiorilli V; Belmondo S; Khouja HR; Abbà S; Faccio A; Daghino S; Lanfranco L Mycorrhiza; 2016 Aug; 26(6):609-21. PubMed ID: 27075897 [TBL] [Abstract][Full Text] [Related]
9. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. Bergeau D; Mazurier S; Barbey C; Merieau A; Chane A; Goux D; Bernard S; Driouich A; Lemanceau P; Vicré M; Latour X PLoS One; 2019; 14(8):e0221025. PubMed ID: 31461454 [TBL] [Abstract][Full Text] [Related]
10. Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings. Shinde S; Zerbs S; Collart FR; Cumming JR; Noirot P; Larsen PE BMC Plant Biol; 2019 Jan; 19(1):4. PubMed ID: 30606121 [TBL] [Abstract][Full Text] [Related]
11. Beneficial contribution of the arbuscular mycorrhizal fungus, Rhizophagus irregularis, in the protection of Medicago truncatula roots against benzo[a]pyrene toxicity. Lenoir I; Fontaine J; Tisserant B; Laruelle F; Lounès-Hadj Sahraoui A Mycorrhiza; 2017 Jul; 27(5):465-476. PubMed ID: 28197735 [TBL] [Abstract][Full Text] [Related]
12. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Stumpe M; Carsjens JG; Stenzel I; Göbel C; Lang I; Pawlowski K; Hause B; Feussner I Phytochemistry; 2005 Apr; 66(7):781-91. PubMed ID: 15797604 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. Aloui A; Recorbet G; Robert F; Schoefs B; Bertrand M; Henry C; Gianinazzi-Pearson V; Dumas-Gaudot E; Aschi-Smiti S BMC Plant Biol; 2011 May; 11():75. PubMed ID: 21545723 [TBL] [Abstract][Full Text] [Related]
14. Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. Mougel C; Offre P; Ranjard L; Corberand T; Gamalero E; Robin C; Lemanceau P New Phytol; 2006; 170(1):165-75. PubMed ID: 16539613 [TBL] [Abstract][Full Text] [Related]
15. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. An J; Zeng T; Ji C; de Graaf S; Zheng Z; Xiao TT; Deng X; Xiao S; Bisseling T; Limpens E; Pan Z New Phytol; 2019 Oct; 224(1):396-408. PubMed ID: 31148173 [TBL] [Abstract][Full Text] [Related]
16. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula. Gyuricza V; Declerck S; Dupré de Boulois H J Environ Radioact; 2010 Aug; 101(8):591-6. PubMed ID: 20378216 [TBL] [Abstract][Full Text] [Related]
17. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. Watts-Williams SJ; Jakobsen I; Cavagnaro TR; Grønlund M J Exp Bot; 2015 Jul; 66(13):4061-73. PubMed ID: 25944927 [TBL] [Abstract][Full Text] [Related]