BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27549807)

  • 1. Current Therapeutics, Their Problems and Thiol Metabolism as Potential Drug Targets in Leishmaniasis.
    Singh K; Garg G; Ali V
    Curr Drug Metab; 2016; 17(9):897-919. PubMed ID: 27549807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism.
    Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A
    Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyamine-trypanothione pathway: an update.
    Ilari A; Fiorillo A; Genovese I; Colotti G
    Future Med Chem; 2017 Jan; 9(1):61-77. PubMed ID: 27957878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system.
    Rosa LB; Aires RL; Oliveira LS; Fontes JV; Miguel DC; Abbehausen C
    ChemMedChem; 2021 Jun; 16(11):1681-1695. PubMed ID: 33615725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Insight into the Current Perspective and Potential Drug Targets for Visceral Leishmaniasis (VL).
    Mansuri R; Singh J; Diwan A
    Curr Drug Targets; 2020; 21(11):1105-1129. PubMed ID: 32321399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting polyamine metabolism for finding new drugs against leishmaniasis: a review.
    Ilari A; Fiorillo A; Baiocco P; Poser E; Angiulli G; Colotti G
    Mini Rev Med Chem; 2015; 15(3):243-52. PubMed ID: 25769972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism.
    Krauth-Siegel RL; Comini MA
    Biochim Biophys Acta; 2008 Nov; 1780(11):1236-48. PubMed ID: 18395526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis.
    Goyeneche-Patino DA; Valderrama L; Walker J; Saravia NG
    Antimicrob Agents Chemother; 2008 Dec; 52(12):4503-6. PubMed ID: 18824610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance.
    Ali V; Behera S; Nawaz A; Equbal A; Pandey K
    Adv Parasitol; 2022; 117():75-155. PubMed ID: 35878950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum.
    Gómez Pérez V; García-Hernandez R; Corpas-López V; Tomás AM; Martín-Sanchez J; Castanys S; Gamarro F
    Int J Parasitol Drugs Drug Resist; 2016 Aug; 6(2):133-9. PubMed ID: 27317865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes of parasite thiol metabolism as drug targets.
    Krauth-Siegel RL; Coombs GH
    Parasitol Today; 1999 Oct; 15(10):404-9. PubMed ID: 10481152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of target-specific natural compounds for drug discovery against Leishmaniasis.
    Gouri V; Upreti S; Samant M
    Parasitol Int; 2022 Dec; 91():102622. PubMed ID: 35798284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy.
    Santi AMM; Murta SMF
    Mem Inst Oswaldo Cruz; 2022; 117():e210401. PubMed ID: 35239945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protease inhibitors in potential drug development for Leishmaniasis.
    Das P; Alam MN; Paik D; Karmakar K; De T; Chakraborti T
    Indian J Biochem Biophys; 2013 Oct; 50(5):363-76. PubMed ID: 24772958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pharmacology of leishmaniasis.
    Balaña-Fouce R; Reguera RM; Cubría JC; Ordóñez D
    Gen Pharmacol; 1998 Apr; 30(4):435-43. PubMed ID: 9580315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.