These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 27549872)
61. Characterization and modulation of fibroblast/endothelial cell co-cultures for the in vitro preformation of three-dimensional tubular networks. Eckermann CW; Lehle K; Schmid SA; Wheatley DN; Kunz-Schughart LA Cell Biol Int; 2011 Nov; 35(11):1097-110. PubMed ID: 21418038 [TBL] [Abstract][Full Text] [Related]
62. Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Dietrich F; Lelkes PI Angiogenesis; 2006; 9(3):111-25. PubMed ID: 17051343 [TBL] [Abstract][Full Text] [Related]
63. Growth inhibition and differentiation of cultured smooth muscle cells depend on cellular crossbridges across the tubular lumen of type I collagen matrix honeycombs. Suzuki T; Ishii I; Kotani A; Masuda M; Hirata K; Ueda M; Ogata T; Sakai T; Ariyoshi N; Kitada M Microvasc Res; 2009 Mar; 77(2):143-9. PubMed ID: 18848952 [TBL] [Abstract][Full Text] [Related]
64. Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts. Zorlutuna P; Vadgama P; Hasirci V J Tissue Eng Regen Med; 2010 Dec; 4(8):628-37. PubMed ID: 20603868 [TBL] [Abstract][Full Text] [Related]
65. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold. O'Leary C; Cavanagh B; Unger RE; Kirkpatrick CJ; O'Dea S; O'Brien FJ; Cryan SA Biomaterials; 2016 Apr; 85():111-27. PubMed ID: 26871888 [TBL] [Abstract][Full Text] [Related]
66. Fabrication of a Perfusable 3D In Vitro Artery-Mimicking Multichannel System for Artery Disease Models. Cho M; Park JK ACS Biomater Sci Eng; 2020 Sep; 6(9):5326-5336. PubMed ID: 33455281 [TBL] [Abstract][Full Text] [Related]
67. A novel coculture model of HUVECs and HUASMCs by hyaluronic acid micropattern on titanium surface. Li J; Zhang K; Xu Y; Chen J; Yang P; Zhao Y; Zhao A; Huang N J Biomed Mater Res A; 2014 Jun; 102(6):1950-60. PubMed ID: 23852625 [TBL] [Abstract][Full Text] [Related]
68. Effects of collagen gel configuration on behavior of vascular smooth muscle cells in vitro: association with vascular morphogenesis. Song J; Rolfe BE; Hayward IP; Campbell GR; Campbell JH In Vitro Cell Dev Biol Anim; 2000 Oct; 36(9):600-10. PubMed ID: 11212145 [TBL] [Abstract][Full Text] [Related]
69. Influence of scaffold morphology on co-cultures of human endothelial and adipose tissue-derived stem cells. Arnal-Pastor M; Martínez-Ramos C; Vallés-Lluch A; Pradas MM J Biomed Mater Res A; 2016 Jun; 104(6):1523-33. PubMed ID: 26860551 [TBL] [Abstract][Full Text] [Related]
70. A model of guided cell self-organization for rapid and spontaneous formation of functional vessels. Andrique L; Recher G; Alessandri K; Pujol N; Feyeux M; Bon P; Cognet L; Nassoy P; Bikfalvi A Sci Adv; 2019 Jun; 5(6):eaau6562. PubMed ID: 31206014 [TBL] [Abstract][Full Text] [Related]
71. The influence of endothelial cells on the ECM composition of 3D engineered cardiovascular constructs. Pullens RA; Stekelenburg M; Baaijens FP; Post MJ J Tissue Eng Regen Med; 2009 Jan; 3(1):11-8. PubMed ID: 18972581 [TBL] [Abstract][Full Text] [Related]
72. Morphological and histological evaluations of 3D-layered blood vessel constructs prepared by hierarchical cell manipulation. Matsusaki M; Kadowaki K; Adachi E; Sakura T; Yokoyama U; Ishikawa Y; Akashi M J Biomater Sci Polym Ed; 2012; 23(1-4):63-79. PubMed ID: 21176392 [TBL] [Abstract][Full Text] [Related]
73. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model. Leonhäuser D; Stollenwerk K; Seifarth V; Zraik IM; Vogt M; Srinivasan PK; Tolba RH; Grosse JO J Transl Med; 2017 Jan; 15(1):3. PubMed ID: 28049497 [TBL] [Abstract][Full Text] [Related]
74. Design and Fabrication of a Three-Dimensional In Vitro System for Modeling Vascular Stenosis. Jones RS; Chang PH; Perahia T; Harmon KA; Junor L; Yost MJ; Fan D; Eberth JF; Goodwin RL Microsc Microanal; 2017 Aug; 23(4):859-871. PubMed ID: 28712382 [TBL] [Abstract][Full Text] [Related]
75. A Dynamically Tunable, Bioinspired Micropatterned Surface Regulates Vascular Endothelial and Smooth Muscle Cells Growth at Vascularization. Gong T; Zhao K; Liu X; Lu L; Liu D; Zhou S Small; 2016 Nov; 12(41):5769-5778. PubMed ID: 27595865 [TBL] [Abstract][Full Text] [Related]
76. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films. Gupta P; Kumar M; Bhardwaj N; Kumar JP; Krishnamurthy CS; Nandi SK; Mandal BB ACS Appl Mater Interfaces; 2016 Jun; 8(25):15874-88. PubMed ID: 27269821 [TBL] [Abstract][Full Text] [Related]
77. Toward completely constructed and cellularized blood vessels. Menu P; Stoltz JF; Kerdjoudj H Biomed Mater Eng; 2012; 22(1-3):17-20. PubMed ID: 22766698 [TBL] [Abstract][Full Text] [Related]
78. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Butoi E; Gan AM; Tucureanu MM; Stan D; Macarie RD; Constantinescu C; Calin M; Simionescu M; Manduteanu I Biochim Biophys Acta; 2016 Jul; 1863(7 Pt A):1568-78. PubMed ID: 27060293 [TBL] [Abstract][Full Text] [Related]
79. Improved arterial wall model by coculturing vascular endothelial and smooth muscle cells. Niwa K; Sakai J; Watanabe T; Ohyama T; Karino T In Vitro Cell Dev Biol Anim; 2007 Jan; 43(1):17-20. PubMed ID: 17570029 [TBL] [Abstract][Full Text] [Related]
80. A biomimetic orthogonal-bilayer tubular scaffold for the co-culture of endothelial cells and smooth muscle cells. Li MX; Li L; Zhou SY; Cao JH; Liang WH; Tian Y; Shi XT; Yang XB; Wu DY RSC Adv; 2021 Sep; 11(50):31783-31790. PubMed ID: 35496878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]