BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 27549930)

  • 1. 3D microtumors in vitro supported by perfused vascular networks.
    Sobrino A; Phan DT; Datta R; Wang X; Hachey SJ; Romero-López M; Gratton E; Lee AP; George SC; Hughes CC
    Sci Rep; 2016 Aug; 6():31589. PubMed ID: 27549930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs.
    Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I
    Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications.
    Phan DTT; Wang X; Craver BM; Sobrino A; Zhao D; Chen JC; Lee LYN; George SC; Lee AP; Hughes CCW
    Lab Chip; 2017 Jan; 17(3):511-520. PubMed ID: 28092382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Tumor-Vascular Model to Study Breast Cancer Cell Invasion and Intravasation.
    Nagaraju S; Truong D; Mouneimne G; Nikkhah M
    Adv Healthc Mater; 2018 May; 7(9):e1701257. PubMed ID: 29334196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting vascular endothelial growth factor and angiogenesis for the treatment of colorectal cancer.
    Collins TS; Hurwitz HI
    Semin Oncol; 2005 Feb; 32(1):61-8. PubMed ID: 15726507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.
    Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C
    Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Decade of Experience in Developing Preclinical Models of Advanced- or Early-Stage Spontaneous Metastasis to Study Antiangiogenic Drugs, Metronomic Chemotherapy, and the Tumor Microenvironment.
    Kerbel RS
    Cancer J; 2015; 21(4):274-83. PubMed ID: 26222079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiangiogenic drugs increase xenograft aggressiveness.
    Cancer Discov; 2012 Mar; 2(3):OF3. PubMed ID: 22586000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HGF/c-Met pathway is one of the mediators of sunitinib-induced tumor cell type-dependent metastasis.
    Shojaei F; Simmons BH; Lee JH; Lappin PB; Christensen JG
    Cancer Lett; 2012 Jul; 320(1):48-55. PubMed ID: 22269210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid protein comprising ATF domain of pro-UK and VAS, an angiogenesis inhibitor, is a potent candidate for targeted cancer therapy.
    Sun Q; Xu Q; Dong X; Cao L; Huang X; Hu Q; Hua ZC
    Int J Cancer; 2008 Aug; 123(4):942-50. PubMed ID: 18528863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of MDM2 inhibitors on vascular endothelial growth factor-mediated tumor angiogenesis in human breast cancer.
    Xiong J; Yang Q; Li J; Zhou S
    Angiogenesis; 2014 Jan; 17(1):37-50. PubMed ID: 23907365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide.
    Takahashi N; Haba A; Matsuno F; Seon BK
    Cancer Res; 2001 Nov; 61(21):7846-54. PubMed ID: 11691802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel antiangiogenic drugs for the management of breast cancer: new approaches for an old issue?
    Bozza C; Fontanella C; Buoro V; Mansutti M; Aprile G
    Expert Rev Clin Pharmacol; 2015 Mar; 8(2):251-65. PubMed ID: 25597501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring hypoxia and vasculature during bevacizumab treatment in a murine colorectal cancer model.
    Heijmen L; Ter Voert EG; Punt CJ; Heerschap A; Oyen WJ; Bussink J; Sweep CG; Laverman P; Span PN; de Geus-Oei LF; Boerman OC; van Laarhoven HW
    Contrast Media Mol Imaging; 2014; 9(3):237-45. PubMed ID: 24700751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing a Physiologic Human Vascularized Micro-Tumor Model for Cancer Research.
    Hachey SJ; Gaebler D; Hughes CCW
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37782104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational models of tumor angiogenesis: A nexus of in silico and in vitro models.
    Soleimani S; Shamsi M; Ghazani MA; Modarres HP; Valente KP; Saghafian M; Ashani MM; Akbari M; Sanati-Nezhad A
    Biotechnol Adv; 2018; 36(4):880-893. PubMed ID: 29378235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiangiogenic mechanisms of PJ-8, a novel inhibitor of vascular endothelial growth factor receptor signaling.
    Huang SW; Lien JC; Kuo SC; Huang TF
    Carcinogenesis; 2012 May; 33(5):1022-30. PubMed ID: 22436611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anchor-IMPACT: A standardized microfluidic platform for high-throughput antiangiogenic drug screening.
    Kim S; Ko J; Lee SR; Park D; Park S; Jeon NL
    Biotechnol Bioeng; 2021 Jul; 118(7):2524-2535. PubMed ID: 33764506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Angiogenesis in Colorectal Cancer: Tyrosine Kinase Inhibitors.
    Kircher SM; Nimeiri HS; Benson AB
    Cancer J; 2016; 22(3):182-9. PubMed ID: 27341596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.