BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 27550424)

  • 1. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected direct reduction mechanism for hydrogenation of ketones catalyzed by iron PNP pincer complexes.
    Yang X
    Inorg Chem; 2011 Dec; 50(24):12836-43. PubMed ID: 22103735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Uncanny Dehydrogenation Mechanism: Polar Bond Control over Stepwise or Concerted Transition States.
    Bellows SM; Chakraborty S; Gary JB; Jones WD; Cundari TR
    Inorg Chem; 2017 May; 56(10):5519-5524. PubMed ID: 28452472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.
    Gorgas N; Kirchner K
    Acc Chem Res; 2018 Jun; 51(6):1558-1569. PubMed ID: 29863334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.
    Ge H; Jing Y; Yang X
    Inorg Chem; 2016 Dec; 55(23):12179-12184. PubMed ID: 27934414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explaining the Advantageous Impact of Tertiary versus Secondary Nitrogen Center on the Activity of PNP-Pincer Co(I)-Complexes for Catalytic Hydrogenation of CO
    Bothra N; Das S; Pati SK
    Chemistry; 2021 Nov; 27(66):16407-16414. PubMed ID: 34636450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles.
    Chakraborty S; Brennessel WW; Jones WD
    J Am Chem Soc; 2014 Jun; 136(24):8564-7. PubMed ID: 24877556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism.
    Gorgas N; Stöger B; Veiros LF; Pittenauer E; Allmaier G; Kirchner K
    Organometallics; 2014 Dec; 33(23):6905-6914. PubMed ID: 27642211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of acceptorless dehydrogenation of N-heterocycles catalyzed by
    Ma L; Feng W; Zhao S; Wang C; Xi Y; Lin X
    RSC Adv; 2023 Jul; 13(30):20748-20755. PubMed ID: 37441048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemistry of reduced monomeric and dimeric cobalt complexes supported by a PNP pincer ligand.
    Rozenel SS; Padilla R; Arnold J
    Inorg Chem; 2013 Oct; 52(19):11544-50. PubMed ID: 24050728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study.
    Chen HY; Di Tommaso D; Hogarth G; Catlow CR
    Dalton Trans; 2011 Jan; 40(2):402-12. PubMed ID: 21103602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and structure of six-coordinate iron borohydride complexes supported by PNP ligands.
    Koehne I; Schmeier TJ; Bielinski EA; Pan CJ; Lagaditis PO; Bernskoetter WH; Takase MK; Würtele C; Hazari N; Schneider S
    Inorg Chem; 2014 Feb; 53(4):2133-43. PubMed ID: 24499462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron borohydride pincer complexes for the efficient hydrogenation of ketones under mild, base-free conditions: synthesis and mechanistic insight.
    Langer R; Iron MA; Konstantinovski L; Diskin-Posner Y; Leitus G; Ben-David Y; Milstein D
    Chemistry; 2012 Jun; 18(23):7196-209. PubMed ID: 22532294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Characterization, and Reactivity of a High-Spin Iron(II) Hydrido Complex Supported by a PNP Pincer Ligand and Its Application as a Homogenous Catalyst for the Hydrogenation of Alkenes.
    Ott JC; Blasius CK; Wadepohl H; Gade LH
    Inorg Chem; 2018 Mar; 57(6):3183-3191. PubMed ID: 29474088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application.
    Wang Y; Zhu L; Shao Z; Li G; Lan Y; Liu Q
    J Am Chem Soc; 2019 Oct; 141(43):17337-17349. PubMed ID: 31633346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Rational Design of 3d Transition Metal Catalysts for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2016 Jun; 55(11):5438-44. PubMed ID: 27163654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.