These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes. Cao Z; Peng Y; Yan T; Li S; Li A; Voth GA J Am Chem Soc; 2010 Aug; 132(33):11395-7. PubMed ID: 20669967 [TBL] [Abstract][Full Text] [Related]
5. Nanoconfinement effects on hydrated excess protons in layered materials. Muñoz-Santiburcio D; Wittekindt C; Marx D Nat Commun; 2013; 4():2349. PubMed ID: 23949229 [TBL] [Abstract][Full Text] [Related]
6. Anisotropic pressure effects on nanoconfined water within narrow graphene slit pores. Ruiz-Barragan S; Forbert H; Marx D Phys Chem Chem Phys; 2023 Oct; 25(41):28119-28129. PubMed ID: 37818616 [TBL] [Abstract][Full Text] [Related]
7. Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water. Lee SH; Rasaiah JC J Chem Phys; 2011 Sep; 135(12):124505. PubMed ID: 21974533 [TBL] [Abstract][Full Text] [Related]
8. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Tuckerman ME; Marx D; Parrinello M Nature; 2002 Jun; 417(6892):925-9. PubMed ID: 12087398 [TBL] [Abstract][Full Text] [Related]
9. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Aziz EF; Ottosson N; Faubel M; Hertel IV; Winter B Nature; 2008 Sep; 455(7209):89-91. PubMed ID: 18769437 [TBL] [Abstract][Full Text] [Related]
10. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores. Bankura A; Chandra A J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic studies of solvated hydrogen and hydroxide ions at aqueous surfaces. Tarbuck TL; Ota ST; Richmond GL J Am Chem Soc; 2006 Nov; 128(45):14519-27. PubMed ID: 17090035 [TBL] [Abstract][Full Text] [Related]
12. The curious case of the hydrated proton. Knight C; Voth GA Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071 [TBL] [Abstract][Full Text] [Related]
13. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations. Bankura A; Chandra A J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997 [TBL] [Abstract][Full Text] [Related]
14. Second-Generation ReaxFF Water Force Field: Improvements in the Description of Water Density and OH-Anion Diffusion. Zhang W; van Duin ACT J Phys Chem B; 2017 Jun; 121(24):6021-6032. PubMed ID: 28570806 [TBL] [Abstract][Full Text] [Related]
16. Network analysis of proton transfer in liquid water. Shevchuk R; Agmon N; Rao F J Chem Phys; 2014 Jun; 140(24):244502. PubMed ID: 24985649 [TBL] [Abstract][Full Text] [Related]
17. Nanoconfinement facilitates reactions of carbon dioxide in supercritical water. Stolte N; Hou R; Pan D Nat Commun; 2022 Oct; 13(1):5932. PubMed ID: 36209274 [TBL] [Abstract][Full Text] [Related]
18. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures. Bankura A; Chandra A J Chem Phys; 2012 Mar; 136(11):114509. PubMed ID: 22443779 [TBL] [Abstract][Full Text] [Related]
19. Water Layering Affects Hydroxide Diffusion in Functionalized Nanoconfined Environments. Zelovich T; Tuckerman ME J Phys Chem Lett; 2020 Jul; 11(13):5087-5091. PubMed ID: 32515960 [TBL] [Abstract][Full Text] [Related]
20. Ab Initio Molecular Dynamics Simulations of an Excess Proton in a Triethylene Glycol-Water Solution: Solvation Structure, Mechanism, and Kinetics. McDonnell MT; Xu H; Keffer DJ J Phys Chem B; 2016 Jun; 120(23):5223-42. PubMed ID: 27218455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]