BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 27551085)

  • 1. Using the shortwave infrared to image middle ear pathologies.
    Carr JA; Valdez TA; Bruns OT; Bawendi MG
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):9989-94. PubMed ID: 27551085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial findings of shortwave infrared otoscopy in a pediatric population.
    Valdez TA; Carr JA; Kavanagh KR; Schwartz M; Blake D; Bruns O; Bawendi M
    Int J Pediatr Otorhinolaryngol; 2018 Nov; 114():15-19. PubMed ID: 30262355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shortwave infrared otoscopy for diagnosis of middle ear effusions: a machine-learning-based approach.
    Kashani RG; Młyńczak MC; Zarabanda D; Solis-Pazmino P; Huland DM; Ahmad IN; Singh SP; Valdez TA
    Sci Rep; 2021 Jun; 11(1):12509. PubMed ID: 34131163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual otoscopy for evaluating the inner ear with a fluid-filled tympanic cavity in dogs.
    Cho Y; Jeong J; Lee H; Kim M; Kim N; Lee K
    J Vet Sci; 2012 Dec; 13(4):419-24. PubMed ID: 23271184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-color reflectance imaging of middle ear pathology in vivo.
    Valdez TA; Spegazzini N; Pandey R; Longo K; Grindle C; Peterson D; Barman I
    Anal Bioanal Chem; 2015 May; 407(12):3277-83. PubMed ID: 25753015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-Wave Infrared Fluorescence Chemical Sensor for Detection of Otitis Media.
    Yim JJ; Singh SP; Xia A; Kashfi-Sadabad R; Tholen M; Huland DM; Zarabanda D; Cao Z; Solis-Pazmino P; Bogyo M; Valdez TA
    ACS Sens; 2020 Nov; 5(11):3411-3419. PubMed ID: 33175516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortwave infrared spatial frequency domain imaging for non-invasive measurement of tissue and blood optical properties.
    Pilvar A; Plutzky J; Pierce M; Roblyer D
    J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35715883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of a smartphone-enabled otoscope in the instruction of otoscopy and middle ear anatomy.
    Hakimi AA; Lalehzarian AS; Lalehzarian SP; Azhdam AM; Nedjat-Haiem S; Boodaie BD
    Eur Arch Otorhinolaryngol; 2019 Oct; 276(10):2953-2956. PubMed ID: 31317322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual CT otoscopy of the middle ear and ossicles in dogs.
    Eom K; Kwak H; Kang H; Park S; Lee H; Kang H; Kwon J; Kim I; Kim N; Lee K
    Vet Radiol Ultrasound; 2008; 49(6):545-50. PubMed ID: 19051643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards an optical diagnostic system for otitis media using a combination of otoscopy and spectroscopy.
    Hu L; Li W; Lin H; Li Y; Zhang H; Svanberg K; Svanberg S
    J Biophotonics; 2019 Jun; 12(6):e201800305. PubMed ID: 30719866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
    Tan HEI; Santa Maria PL; Wijesinghe P; Francis Kennedy B; Allardyce BJ; Eikelboom RH; Atlas MD; Dilley RJ
    Otolaryngol Head Neck Surg; 2018 Sep; 159(3):424-438. PubMed ID: 29787354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Multispectral Imaging in the Human Tympanic Membrane.
    Tran Van T; Lu Thi Thao M; Bui Mai Quynh L; Phan Ngoc Khuong C; Huynh Quang L
    J Healthc Eng; 2020; 2020():6219845. PubMed ID: 33014321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a novel ear simulator to teach pneumatic otoscopy.
    Morris E; Kesser BW; Peirce-Cottler S; Keeley M
    Simul Healthc; 2012 Feb; 7(1):22-6. PubMed ID: 21937958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.
    Carr JA; Franke D; Caram JR; Perkinson CF; Saif M; Askoxylakis V; Datta M; Fukumura D; Jain RK; Bawendi MG; Bruns OT
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4465-4470. PubMed ID: 29626132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared.
    Carr JA; Aellen M; Franke D; So PTC; Bruns OT; Bawendi MG
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9080-9085. PubMed ID: 30150372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiwavelength fluorescence otoscope for video-rate chemical imaging of middle ear pathology.
    Valdez TA; Pandey R; Spegazzini N; Longo K; Roehm C; Dasari RR; Barman I
    Anal Chem; 2014 Oct; 86(20):10454-60. PubMed ID: 25226556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Pneumatic Otoscopy Using a Light-Based Ranging Technique.
    Shelton RL; Nolan RM; Monroy GL; Pande P; Novak MA; Porter RG; Boppart SA
    J Assoc Res Otolaryngol; 2017 Aug; 18(4):555-568. PubMed ID: 28653118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of digital otoscopy in pediatric patients: A prospective randomized controlled clinical trial.
    Kleinman K; Psoter KJ; Nyhan A; Solomon BS; Kim JM; Canares T
    Am J Emerg Med; 2021 Aug; 46():150-155. PubMed ID: 33945977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Technologies for the Diagnosis of Otitis Media.
    Marom T; Kraus O; Habashi N; Tamir SO
    Otolaryngol Head Neck Surg; 2019 Mar; 160(3):447-456. PubMed ID: 30396324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical assessment of the in vivo tympanic membrane status using a handheld optical coherence tomography-based otoscope.
    Park K; Cho NH; Jeon M; Lee SH; Jang JH; Boppart SA; Jung W; Kim J
    Acta Otolaryngol; 2018 Apr; 138(4):367-374. PubMed ID: 29125012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.