These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27552057)

  • 41. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atomistic picture of conformational exchange in a T4 lysozyme cavity mutant: an experiment-guided molecular dynamics study.
    Vallurupalli P; Chakrabarti N; Pomès R; Kay LE
    Chem Sci; 2016 Jun; 7(6):3602-3613. PubMed ID: 30008994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparisons of pressure and temperature activation parameters for amide hydrogen exchange in T4 lysozyme.
    Dixon ME; Hitchens TK; Bryant RG
    Biochemistry; 2000 Jan; 39(1):248-54. PubMed ID: 10625500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical studies of the response of a protein structure to cavity-creating mutations.
    Lee J; Lee K; Shin S
    Biophys J; 2000 Apr; 78(4):1665-71. PubMed ID: 10733949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of a protein free-energy landscape by circular permutation.
    Radou G; Enciso M; Krivov S; Paci E
    J Phys Chem B; 2013 Nov; 117(44):13743-7. PubMed ID: 24090448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perturbation of Trp 138 in T4 lysozyme by mutations at Gln 105 used to correlate changes in structure, stability, solvation, and spectroscopic properties.
    Pjura P; McIntosh LP; Wozniak JA; Matthews BW
    Proteins; 1993 Apr; 15(4):401-12. PubMed ID: 8460110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems.
    McGuffee SR; Elcock AH
    J Am Chem Soc; 2006 Sep; 128(37):12098-110. PubMed ID: 16967959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Absolute Binding Free Energies between T4 Lysozyme and 141 Small Molecules: Calculations Based on Multiple Rigid Receptor Configurations.
    Xie B; Nguyen TH; Minh DDL
    J Chem Theory Comput; 2017 Jun; 13(6):2930-2944. PubMed ID: 28430432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.
    Cabeza de Vaca I; Qian Y; Vilseck JZ; Tirado-Rives J; Jorgensen WL
    J Chem Theory Comput; 2018 Jun; 14(6):3279-3288. PubMed ID: 29708338
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
    Rodinger T; Howell PL; Pomès R
    J Chem Phys; 2008 Oct; 129(15):155102. PubMed ID: 19045232
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nontargeted Parallel Cascade Selection Molecular Dynamics Based on a Nonredundant Selection Rule for Initial Structures Enhances Conformational Sampling of Proteins.
    Harada R; Sladek V; Shigeta Y
    J Chem Inf Model; 2019 Dec; 59(12):5198-5206. PubMed ID: 31697897
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Role of Conformational Changes in Molecular Recognition.
    Ahmad M; Helms V; Kalinina OV; Lengauer T
    J Phys Chem B; 2016 Mar; 120(9):2138-44. PubMed ID: 26901699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect.
    Xu J; Baase WA; Baldwin E; Matthews BW
    Protein Sci; 1998 Jan; 7(1):158-77. PubMed ID: 9514271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural and thermodynamic analysis of the binding of solvent at internal sites in T4 lysozyme.
    Xu J; Baase WA; Quillin ML; Baldwin EP; Matthews BW
    Protein Sci; 2001 May; 10(5):1067-78. PubMed ID: 11316887
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein-ligand binding with the coarse-grained Martini model.
    Souza PCT; Thallmair S; Conflitti P; Ramírez-Palacios C; Alessandri R; Raniolo S; Limongelli V; Marrink SJ
    Nat Commun; 2020 Jul; 11(1):3714. PubMed ID: 32709852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Finding multiple reaction pathways of ligand unbinding.
    Rydzewski J; Valsson O
    J Chem Phys; 2019 Jun; 150(22):221101. PubMed ID: 31202231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rotamer decomposition and protein dynamics: efficiently analyzing dihedral populations from molecular dynamics.
    Watanabe H; Elstner M; Steinbrecher T
    J Comput Chem; 2013 Jan; 34(3):198-205. PubMed ID: 23007849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How internal cavities destabilize a protein.
    Xue M; Wakamoto T; Kejlberg C; Yoshimura Y; Nielsen TA; Risør MW; Sanggaard KW; Kitahara R; Mulder FAA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21031-21036. PubMed ID: 31570587
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformational Sub-states and Populations in Enzyme Catalysis.
    Agarwal PK; Doucet N; Chennubhotla C; Ramanathan A; Narayanan C
    Methods Enzymol; 2016; 578():273-97. PubMed ID: 27497171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.