These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27552112)

  • 41. The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.
    Sakai T; Mochizuki S; Haga K; Uehara Y; Suzuki A; Harada A; Wada T; Ishiguro S; Okada K
    Plant J; 2012 Apr; 70(2):303-14. PubMed ID: 22122664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana.
    Nishida S; Tsuzuki C; Kato A; Aisu A; Yoshida J; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1433-42. PubMed ID: 21742768
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses.
    Slavikova S; Ufaz S; Avin-Wittenberg T; Levanony H; Galili G
    J Exp Bot; 2008; 59(14):4029-43. PubMed ID: 18836138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development.
    Galinha C; Hofhuis H; Luijten M; Willemsen V; Blilou I; Heidstra R; Scheres B
    Nature; 2007 Oct; 449(7165):1053-7. PubMed ID: 17960244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measuring whole plant CO2 exchange with the environment reveals opposing effects of the gin2-1 mutation in shoots and roots of Arabidopsis thaliana.
    Brauner K; Stutz S; Paul M; Heyer AG
    Plant Signal Behav; 2015; 10(1):e973822. PubMed ID: 25482780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of miR156/SPLs modules in Arabidopsis lateral root development.
    Yu N; Niu QW; Ng KH; Chua NH
    Plant J; 2015 Aug; 83(4):673-85. PubMed ID: 26096676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arabidopsis thaliana root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences.
    Nguyen-Kim H; San Clemente H; Balliau T; Zivy M; Dunand C; Albenne C; Jamet E
    Proteomics; 2016 Feb; 16(3):491-503. PubMed ID: 26572690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Root exudate signals in plant-plant interactions.
    Wang NQ; Kong CH; Wang P; Meiners SJ
    Plant Cell Environ; 2021 Apr; 44(4):1044-1058. PubMed ID: 32931018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana.
    Gan Y; Filleur S; Rahman A; Gotensparre S; Forde BG
    Planta; 2005 Nov; 222(4):730-42. PubMed ID: 16021502
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Root secretions: from genes and molecules to microbial associations.
    Biedrzycki ML; Bais HP
    J Exp Bot; 2009; 60(6):1533-4. PubMed ID: 19386613
    [No Abstract]   [Full Text] [Related]  

  • 51. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings.
    Martín-Rejano EM; Camacho-Cristóbal JJ; Herrera-Rodríguez MB; Rexach J; Navarro-Gochicoa MT; González-Fontes A
    Physiol Plant; 2011 Jun; 142(2):170-8. PubMed ID: 21338369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tracing Plant Defense Responses in Roots upon MAMP/DAMP Treatment.
    Hiruma K; Saijo Y
    Methods Mol Biol; 2016; 1398():319-22. PubMed ID: 26867634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana.
    Kalcsits LA; Guy RD
    Physiol Plant; 2013 Oct; 149(2):249-59. PubMed ID: 23414092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Root-Root Interactions: Towards A Rhizosphere Framework.
    Mommer L; Kirkegaard J; van Ruijven J
    Trends Plant Sci; 2016 Mar; 21(3):209-217. PubMed ID: 26832947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasticity of the Arabidopsis root system under nutrient deficiencies.
    Gruber BD; Giehl RF; Friedel S; von Wirén N
    Plant Physiol; 2013 Sep; 163(1):161-79. PubMed ID: 23852440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BYPASS1 negatively regulates a root-derived signal that controls plant architecture.
    Van Norman JM; Frederick RL; Sieburth LE
    Curr Biol; 2004 Oct; 14(19):1739-46. PubMed ID: 15458645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RSL4 Takes Control: Multiple Signals, One Transcription Factor.
    Marzol E; Borassi C; Denita Juárez SP; Mangano S; Estevez JM
    Trends Plant Sci; 2017 Jul; 22(7):553-555. PubMed ID: 28487046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana.
    Hubberten HM; Drozd A; Tran BV; Hesse H; Hoefgen R
    Plant J; 2012 Nov; 72(4):625-35. PubMed ID: 22775482
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unraveling the secrets of plant roots: Simplified method for large scale root exudate sampling and analysis in
    Subrahmaniam HJ; Lind Salomonsen C; Radutoiu S; Ehlers BK; Glasius M
    Open Res Eur; 2023; 3():12. PubMed ID: 37645513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Root tip contact with low-phosphate media reprograms plant root architecture.
    Svistoonoff S; Creff A; Reymond M; Sigoillot-Claude C; Ricaud L; Blanchet A; Nussaume L; Desnos T
    Nat Genet; 2007 Jun; 39(6):792-6. PubMed ID: 17496893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.