These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27552121)

  • 81. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years.
    Jiang Z; Liu J; Chen J; Chen Q; Yan X; Xuan J; Zeng J
    Water Res; 2014 May; 54():1-11. PubMed ID: 24531075
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Monthly changes in the abundance and biomass of zooplankton and water quality parameters in Kukkarahalli Lake of Mysore, India.
    Joseph B; Yamakanamardi SM
    J Environ Biol; 2011 Sep; 32(5):551-7. PubMed ID: 22319868
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Zooplankton assemblages in eutrophic reservoirs of the Brazilian semi-arid.
    Eskinazi-Sant'Anna EM; Menezes R; Costa IS; Araújo M; Panosso R; Attayde JL
    Braz J Biol; 2013 Feb; 73(1):37-52. PubMed ID: 23644787
    [TBL] [Abstract][Full Text] [Related]  

  • 84. How much crude oil can zooplankton ingest? Estimating the quantity of dispersed crude oil defecated by planktonic copepods.
    Almeda R; Connelly TL; Buskey EJ
    Environ Pollut; 2016 Jan; 208(Pt B):645-54. PubMed ID: 26586632
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations.
    Kvile KØ; Ashjian C; Feng Z; Zhang J; Ji R
    Glob Chang Biol; 2018 Nov; 24(11):5426-5439. PubMed ID: 30099832
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Climate alters intraspecific variation in copepod effect traits through pond food webs.
    Charette C; Derry AM
    Ecology; 2016 May; 97(5):1239-50. PubMed ID: 27349100
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Studies on the zooplankton biodiversity and density in Adyar estuary, Chennai, India.
    Janakiraman A; Janakiraman A; Naveed MS; Muthupriya P; Sugumaran J; Sheriff MA; Altaff K
    J Environ Biol; 2013 Mar; 34(2):273-5. PubMed ID: 24620591
    [TBL] [Abstract][Full Text] [Related]  

  • 88. [Response of microcosm zooplankton to acidification].
    Kurbatova SA
    Izv Akad Nauk Ser Biol; 2005; (1):100-8. PubMed ID: 15768639
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Upwelling modulation of functional traits of a dominant planktonic grazer during "warm-acid" El Niño 2015 in a year-round upwelling area of Humboldt Current.
    Aguilera VM; Escribano R; Vargas CA; González MT
    PLoS One; 2019; 14(1):e0209823. PubMed ID: 30640913
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France).
    Delpy F; Pagano M; Blanchot J; Carlotti F; Thibault-Botha D
    Mar Pollut Bull; 2012 Sep; 64(9):1921-32. PubMed ID: 22776776
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The influence of zooplankton enrichment on the microbial loop in a shallow, eutrophic lake.
    Zingel P; Agasild H; Karus K; Kangro K; Tammert H; Tõnno I; Feldmann T; Nõges T
    Eur J Protistol; 2016 Feb; 52():22-35. PubMed ID: 26555735
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Feeding on dispersed vs. aggregated particles: The effect of zooplankton feeding behavior on vertical flux.
    Koski M; Boutorh J; de la Rocha C
    PLoS One; 2017; 12(5):e0177958. PubMed ID: 28545095
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The status of the ecological environment and a proposed protection strategy in Sanya Bay, Hainan Island, China.
    Huang L; Tan Y; Song X; Huang X; Wang H; Zhang S; Dong J; Chen R
    Mar Pollut Bull; 2003; 47(1-6):180-6. PubMed ID: 12787617
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Some ecological implications of a neem (azadirachtin) insecticide disturbance to zooplankton communities in forest pond enclosures.
    Kreutzweiser DP; Sutton TM; Back RC; Pangle KL; Thompson DG
    Aquat Toxicol; 2004 Apr; 67(3):239-54. PubMed ID: 15063074
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Changes in zooplankton communities from epipelagic to lower mesopelagic waters.
    Stefanoudis PV; Rivers M; Ford H; Yashayaev IM; Rogers AD; Woodall LC
    Mar Environ Res; 2019 Apr; 146():1-11. PubMed ID: 30879698
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Climate impact on plankton ecosystems in the Northeast Atlantic.
    Richardson AJ; Schoeman DS
    Science; 2004 Sep; 305(5690):1609-12. PubMed ID: 15361622
    [TBL] [Abstract][Full Text] [Related]  

  • 97. [Abundance and biomass of planktonic ciliates in the shelf of East China Sea in spring and autumn].
    Yu Y; Zhang WC; Zhou F; Liu CG; Feng MP; Li HB; Zhao Y; Xiao T
    Ying Yong Sheng Tai Xue Bao; 2013 Aug; 24(8):2310-8. PubMed ID: 24380353
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Ecological environment changes in Daya Bay, China, from 1982 to 2004.
    Wang YS; Lou ZP; Sun CC; Sun S
    Mar Pollut Bull; 2008 Nov; 56(11):1871-9. PubMed ID: 18783802
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Long-term studies reveal major environmental factors driving zooplankton dynamics and periodicities in the Black Sea coastal zooplankton.
    Vereshchaka AL; Anokhina LL; Lukasheva TA; Lunina AA
    PeerJ; 2019; 7():e7588. PubMed ID: 31579575
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Summer-fall macrozooplankton assemblages in a large Arctic estuarine zone (south-eastern Barents Sea): Environmental drivers of spatial distribution.
    Dvoretsky VG; Dvoretsky AG
    Mar Environ Res; 2022 Jan; 173():105498. PubMed ID: 34798491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.