These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27552289)

  • 1. Nanostructure-Induced Distortion in Single-Emitter Microscopy.
    Lim K; Ropp C; Barik S; Fourkas J; Shapiro B; Waks E
    Nano Lett; 2016 Sep; 16(9):5415-9. PubMed ID: 27552289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defocused imaging-based quantification of plasmon-induced distortion of single emitter emission.
    Moon G; Son T; Yoo H; Lee C; Lee H; Im S; Kim D
    Light Sci Appl; 2023 Sep; 12(1):221. PubMed ID: 37718351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale probing of image-dipole interactions in a metallic nanostructure.
    Ropp C; Cummins Z; Nah S; Fourkas JT; Shapiro B; Waks E
    Nat Commun; 2015 Mar; 6():6558. PubMed ID: 25790228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution imaging of interactions between molecules and plasmonic nanostructures.
    Willets KA
    Phys Chem Chem Phys; 2013 Apr; 15(15):5345-54. PubMed ID: 23321954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-resolution Imaging of Plasmonic Near-Fields: Overcoming Emitter Mislocalizations.
    Miao Y; Boutelle RC; Blake A; Chandrasekaran V; Sheehan CJ; Hollingsworth J; Neuhauser D; Weiss S
    J Phys Chem Lett; 2022 May; 13(20):4520-4529. PubMed ID: 35576273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-Field Super-resolution Detection of Plasmonic Near-Fields.
    Boutelle RC; Neuhauser D; Weiss S
    ACS Nano; 2016 Aug; 10(8):7955-62. PubMed ID: 27501216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors.
    Heaps CW; Schatz GC
    J Chem Phys; 2017 Jun; 146(22):224201. PubMed ID: 29166054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot.
    Ropp C; Cummins Z; Nah S; Fourkas JT; Shapiro B; Waks E
    Nat Commun; 2013; 4():1447. PubMed ID: 23385591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-Resolving the Actual Position of Single Fluorescent Molecules Coupled to a Plasmonic Nanoantenna.
    Fu B; Isaacoff BP; Biteen JS
    ACS Nano; 2017 Sep; 11(9):8978-8987. PubMed ID: 28806873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Optical Mapping of the Position of Quantum Dots Embedded in a Nanowire Antenna.
    Fons R; Osterkryger AD; Stepanov P; Gautier E; Bleuse J; GĂ©rard JM; Gregersen N; Claudon J
    Nano Lett; 2018 Oct; 18(10):6434-6440. PubMed ID: 30185050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution optical imaging of single-molecule SERS hot spots.
    Stranahan SM; Willets KA
    Nano Lett; 2010 Sep; 10(9):3777-84. PubMed ID: 20718441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-scale errors in optical localization due to spin-orbit coupling of light.
    Araneda G; Walser S; Colombe Y; Higginbottom DB; Volz J; Blatt R; Rauschenbeutel A
    Nat Phys; 2019 Jan; 15(1):17-21. PubMed ID: 30854021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positioning of quantum dots on metallic nanostructures.
    Kramer RK; Pholchai N; Sorger VJ; Yim TJ; Oulton R; Zhang X
    Nanotechnology; 2010 Apr; 21(14):145307. PubMed ID: 20234079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-resolution imaging of SERS hot spots.
    Willets KA
    Chem Soc Rev; 2014 Jun; 43(11):3854-64. PubMed ID: 24309836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-resolution imaging of light-matter interactions near single semiconductor nanowires.
    Johlin E; Solari J; Mann SA; Wang J; Shimizu TS; Garnett EC
    Nat Commun; 2016 Dec; 7():13950. PubMed ID: 27996010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states.
    Schell AW; Engel P; Werra JF; Wolff C; Busch K; Benson O
    Nano Lett; 2014 May; 14(5):2623-7. PubMed ID: 24694035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercharging Superlocalization Microscopy: How Electrochemical Charging of Plasmonic Nanostructures Uncovers Hidden Heterogeneity.
    Willets KA
    ACS Nano; 2019 Jun; 13(6):6145-6150. PubMed ID: 31184136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter.
    Park KD; May MA; Leng H; Wang J; Kropp JA; Gougousi T; Pelton M; Raschke MB
    Sci Adv; 2019 Jul; 5(7):eaav5931. PubMed ID: 31309142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas.
    Bitzer A; Ortner A; Walther M
    Appl Opt; 2010 Jul; 49(19):E1-6. PubMed ID: 20648112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shaping single emitter emission with metallic hole arrays: strong focusing of dipolar radiation.
    Moerland RJ; Eguiluz L; Kaivola M
    Opt Express; 2013 Feb; 21(4):4578-90. PubMed ID: 23481991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.