BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27552323)

  • 1. Biotransport of Algal Toxins to Riparian Food Webs.
    Moy NJ; Dodson J; Tassone SJ; Bukaveckas PA; Bulluck LP
    Environ Sci Technol; 2016 Sep; 50(18):10007-14. PubMed ID: 27552323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prothonotary warbler nestling growth and condition in response to variation in aquatic and terrestrial prey availability.
    Dodson JC; Moy NJ; Bulluck LP
    Ecol Evol; 2016 Oct; 6(20):7462-7474. PubMed ID: 28725413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure to the cyanotoxin microcystin arising from interspecific differences in feeding habits among fish and shellfish in the James River Estuary, Virginia.
    Wood JD; Franklin RB; Garman G; McIninch S; Porter AJ; Bukaveckas PA
    Environ Sci Technol; 2014 May; 48(9):5194-202. PubMed ID: 24694322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in metal concentrations across a large contamination gradient is reflected in stream but not linked riparian food webs.
    Kraus JM; Wanty RB; Schmidt TS; Walters DM; Wolf RE
    Sci Total Environ; 2021 May; 769():144714. PubMed ID: 33736264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.
    Kautza A; Mazeika S; Sullivan P
    Ecology; 2016 Mar; 97(3):694-705. PubMed ID: 27197396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers.
    Chaves-Ulloa R; Taylor BW; Broadley HJ; Cottingham KL; Baer NA; Weathers KC; Ewing HA; Chen CY
    Ecol Appl; 2016 Sep; 26(6):1771-1784. PubMed ID: 27755696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic-terrestrial transfer of neonicotinoid insecticides in riparian food webs.
    Roodt AP; Huszarik M; Entling MH; Schulz R
    J Hazard Mater; 2023 Aug; 455():131635. PubMed ID: 37196444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs.
    Kraus JM; Schmidt TS; Walters DM; Wanty RB; Zuellig RE; Wolf RE
    Ecol Appl; 2014 Mar; 24(2):235-43. PubMed ID: 24689137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stream thermal heterogeneity prolongs aquatic-terrestrial subsidy and enhances riparian spider growth.
    Uno H
    Ecology; 2016 Oct; 97(10):2547-2553. PubMed ID: 27859130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Biodriven Transfer of Per- and Polyfluoroalkyl Substances from the Aquatic to the Terrestrial Environment via Emergent Insects.
    Koch A; Jonsson M; Yeung LWY; Kärrman A; Ahrens L; Ekblad A; Wang T
    Environ Sci Technol; 2021 Jun; 55(12):7900-7909. PubMed ID: 34029071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing aquatic-to-terrestrial contaminant transport to terrestrial arthropod consumers in a multiuse river system.
    Alberts JM; Sullivan SMP
    Environ Pollut; 2016 Jun; 213():53-62. PubMed ID: 26874875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury occurrence in prothonotary warblers (Protonotaria citrea) inhabiting a National Priorities List site and reference areas in southern Alabama.
    Adair BM; Reynolds KD; McMurry ST; Cobb GP
    Arch Environ Contam Toxicol; 2003 Feb; 44(2):265-71. PubMed ID: 12520399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distance that contaminated aquatic subsidies extend into lake riparian zones.
    Raikow DF; Walters DM; Fritz KM; Mills MA
    Ecol Appl; 2011 Apr; 21(3):983-90. PubMed ID: 21639060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contaminant Subsidies to Riparian Food Webs in Appalachian Streams Impacted by Mountaintop Removal Coal Mining.
    Naslund LC; Gerson JR; Brooks AC; Walters DM; Bernhardt ES
    Environ Sci Technol; 2020 Apr; 54(7):3951-3959. PubMed ID: 32189492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsidy Quality Affects Common Riparian Web-Building Spiders: Consequences of Aquatic Contamination and Food Resource.
    Pietz S; Kolbenschlag S; Röder N; Roodt AP; Steinmetz Z; Manfrin A; Schwenk K; Schulz R; Schäfer RB; Zubrod JP; Bundschuh M
    Environ Toxicol Chem; 2023 Jun; 42(6):1346-1358. PubMed ID: 36946335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals.
    Jardine TD; Woods R; Marshall J; Fawcetr J; Lobegeiger J; Valdez D; Kainz MJ
    Ecology; 2015 Dec; 96(12):3257-69. PubMed ID: 26909431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCB concentrations in riparian spiders (Tetragnathidae) consistently reflect concentrations in water and aquatic macroinvertebrates, but not sediment: Analysis of a seven-year field study.
    Otter RR; Mills MA; Fritz KM; Lazorchak JM; White DP; Beaubien GB; Walters DM
    Sci Total Environ; 2024 Feb; 912():169230. PubMed ID: 38072266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riparian condition influences spider community structure and the contribution of aquatic carbon subsidies to terrestrial habitats.
    Hunt JL; Paterson H; Close P; Pettit NE
    Sci Total Environ; 2020 Dec; 746():141109. PubMed ID: 32763604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverberating effects of resource exchanges in stream-riparian food webs.
    Collins SF; Baxter CV; Marcarelli AM; Felicetti L; Florin S; Wipfli MS; Servheen G
    Oecologia; 2020 Jan; 192(1):179-189. PubMed ID: 31828529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota.
    Ibelings BW; Havens KE
    Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.