These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27552323)

  • 21. A diverse suite of pharmaceuticals contaminates stream and riparian food webs.
    Richmond EK; Rosi EJ; Walters DM; Fick J; Hamilton SK; Brodin T; Sundelin A; Grace MR
    Nat Commun; 2018 Nov; 9(1):4491. PubMed ID: 30401828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest.
    Marczak LB; Richardson JS
    J Anim Ecol; 2007 Jul; 76(4):687-94. PubMed ID: 17584374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use.
    Larson JH; Richardson WB; Knights BC; Bartsch LA; Bartsch MR; Nelson JC; Veldboom JA; Vallazza JM
    PLoS One; 2013; 8(8):e70666. PubMed ID: 23940619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicity of harmful cyanobacterial blooms to bream and roach.
    Trinchet I; Cadel-Six S; Djediat C; Marie B; Bernard C; Puiseux-Dao S; Krys S; Edery M
    Toxicon; 2013 Sep; 71():121-7. PubMed ID: 23732128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon and nitrogen transfer from a desert stream to riparian predators.
    Sanzone DM; Meyer JL; Marti E; Gardiner EP; Tank JL; Grimm NB
    Oecologia; 2003 Jan; 134(2):238-50. PubMed ID: 12647165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments.
    Zurawell RW; Chen H; Burke JM; Prepas EE
    J Toxicol Environ Health B Crit Rev; 2005; 8(1):1-37. PubMed ID: 15762553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic Engineered Nanoparticle Additions Alter Insect Emergence and Result in Metal Flux from Aquatic Ecosystems into Riparian Food Webs.
    Perrotta BG; Simonin M; Colman BP; Anderson SM; Baruch E; Castellon BT; Matson CW; Bernhardt ES; King RS
    Environ Sci Technol; 2023 May; 57(21):8085-8095. PubMed ID: 37200151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aquatic Insects Transfer Pharmaceuticals and Endocrine Disruptors from Aquatic to Terrestrial Ecosystems.
    Previšić A; Vilenica M; Vučković N; Petrović M; Rožman M
    Environ Sci Technol; 2021 Mar; 55(6):3736-3746. PubMed ID: 33650859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Riparian swallows as integrators of landscape change in a multiuse river system: implications for aquatic-to-terrestrial transfers of contaminants.
    Alberts JM; Sullivan SM; Kautza A
    Sci Total Environ; 2013 Oct; 463-464():42-50. PubMed ID: 23792246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: a multi-disciplinary approach.
    Gkelis S; Zaoutsos N
    Toxicon; 2014 Feb; 78():1-9. PubMed ID: 24275084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The movement of aquatic mercury through terrestrial food webs.
    Cristol DA; Brasso RL; Condon AM; Fovargue RE; Friedman SL; Hallinger KK; Monroe AP; White AE
    Science; 2008 Apr; 320(5874):335. PubMed ID: 18420925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of ecological factors and of land use on mercury levels in fish in the Tapajós River basin, Amazon.
    Sampaio da Silva D; Lucotte M; Paquet S; Davidson R
    Environ Res; 2009 May; 109(4):432-46. PubMed ID: 19356749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs.
    Lopez AR; Hesterberg DR; Funk DH; Buchwalter DB
    Environ Sci Technol; 2016 Jun; 50(12):6556-64. PubMed ID: 27223406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Occurrence of toxic blue-green algae in the Kucukcekmece lagoon (Istanbul, Turkey).
    Albay M; Matthiensen A; Codd GA
    Environ Toxicol; 2005 Jun; 20(3):277-84. PubMed ID: 15892069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An introduced plant affects aquatic-derived carbon in the diets of riparian birds.
    Riedl HL; Stinson L; Pejchar L; Clements WH
    PLoS One; 2018; 13(11):e0207389. PubMed ID: 30481226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The presence of microcystins and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters.
    Gkelis S; Lanaras T; Sivonen K
    Aquat Toxicol; 2006 Jun; 78(1):32-41. PubMed ID: 16540185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uptake, transfer and elimination kinetics of paralytic shellfish toxins in common octopus (Octopus vulgaris).
    Lopes VM; Baptista M; Repolho T; Rosa R; Costa PR
    Aquat Toxicol; 2014 Jan; 146():205-11. PubMed ID: 24316438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyanobacterial Toxic and Bioactive Peptides in Freshwater Bodies of Greece: Concentrations, Occurrence Patterns, and Implications for Human Health.
    Gkelis S; Lanaras T; Sivonen K
    Mar Drugs; 2015 Oct; 13(10):6319-35. PubMed ID: 26473888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs.
    Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4419-23. PubMed ID: 11904388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Body size drives allochthony in food webs of tropical rivers.
    Jardine TD; Rayner TS; Pettit NE; Valdez D; Ward DP; Lindner G; Douglas MM; Bunn SE
    Oecologia; 2017 Feb; 183(2):505-517. PubMed ID: 27896479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.