BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 27552650)

  • 1. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon.
    Zhu L; Liang Y; Sun L; Wang J; Xu D
    Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Activation of Palladium Nanoparticles by Polyoxometalate-Attached Melem for Boosting Formic Acid Dehydrogenation Efficiency.
    Leng Y; Zhang C; Liu B; Liu M; Jiang P; Dai S
    ChemSusChem; 2018 Oct; 11(19):3396-3401. PubMed ID: 30074681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridinic Nitrogen-Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the N-Allylation Reaction.
    Li X; Zhao Q; Feng X; Pan L; Wu Z; Wu X; Ma T; Liu J; Pan Y; Song Y; Wu M
    ChemSusChem; 2019 Feb; 12(4):858-865. PubMed ID: 30600929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete dechlorination of lindane over N-doped porous carbon supported Pd catalyst at room temperature and atmospheric pressure.
    Yang J; Qi X; Shen F; Qiu M; Smith RL
    Sci Total Environ; 2020 Jun; 719():137534. PubMed ID: 32135324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Theoretical Studies of Ultrafine Pd-Based Biochar Catalyst for Dehydrogenation of Formic Acid and Application of In Situ Hydrogenation.
    Zou L; Liu Q; Zhu D; Huang Y; Mao Y; Luo X; Liang Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17282-17295. PubMed ID: 35389607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach.
    Zhu QL; Tsumori N; Xu Q
    J Am Chem Soc; 2015 Sep; 137(36):11743-8. PubMed ID: 26323169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction.
    Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH
    J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.