These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27552991)

  • 21. RUNX1 deficiency cooperates with SRSF2 mutation to induce multilineage hematopoietic defects characteristic of MDS.
    Huang YJ; Chen JY; Yan M; Davis AG; Miyauchi S; Chen L; Hao Y; Katz S; Bejar R; Abdel-Wahab O; Fu XD; Zhang DE
    Blood Adv; 2022 Dec; 6(23):6078-6092. PubMed ID: 36206200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Replication stress signaling is a therapeutic target in myelodysplastic syndromes with splicing factor mutations.
    Flach J; Jann JC; Knaflic A; Riabov V; Streuer A; Altrock E; Xu Q; Schmitt N; Obländer J; Nowak V; Danner J; Mehralivand A; Hofmann F; Palme I; Jawhar A; Wuchter P; Metzgeroth G; Nolte F; Hofmann WK; Nowak D
    Haematologica; 2021 Nov; 106(11):2906-2917. PubMed ID: 33054116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations in the Spliceosomal Machinery Genes SRSF2, U2AF1, and ZRSR2 and Response to Decitabine in Myelodysplastic Syndrome.
    Hong JY; Seo JY; Kim SH; Jung HA; Park S; Kim K; Jung CW; Kim JS; Park JS; Kim HJ; Jang JH
    Anticancer Res; 2015 May; 35(5):3081-9. PubMed ID: 25964599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The prognostic impact of mutations in spliceosomal genes for myelodysplastic syndrome patients without ring sideroblasts.
    Kang MG; Kim HR; Seo BY; Lee JH; Choi SY; Kim SH; Shin JH; Suh SP; Ahn JS; Shin MG
    BMC Cancer; 2015 Jun; 15():484. PubMed ID: 26115659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Ineffective erythropoiesis in myelodysplastic syndrome].
    Iwama A
    Rinsho Ketsueki; 2018; 59(6):793-797. PubMed ID: 29973461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Srsf2
    Xu JJ; Chalk AM; Wall M; Langdon WY; Smeets MF; Walkley CR
    Leukemia; 2022 Dec; 36(12):2883-2893. PubMed ID: 36271153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct splicing signatures affect converged pathways in myelodysplastic syndrome patients carrying mutations in different splicing regulators.
    Qiu J; Zhou B; Thol F; Zhou Y; Chen L; Shao C; DeBoever C; Hou J; Li H; Chaturvedi A; Ganser A; Bejar R; Zhang DE; Fu XD; Heuser M
    RNA; 2016 Oct; 22(10):1535-49. PubMed ID: 27492256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative RNA-omics Discovers GNAS Alternative Splicing as a Phenotypic Driver of Splicing Factor-Mutant Neoplasms.
    Wheeler EC; Vora S; Mayer D; Kotini AG; Olszewska M; Park SS; Guccione E; Teruya-Feldstein J; Silverman L; Sunahara RK; Yeo GW; Papapetrou EP
    Cancer Discov; 2022 Mar; 12(3):836-855. PubMed ID: 34620690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations.
    Chen L; Chen JY; Huang YJ; Gu Y; Qiu J; Qian H; Shao C; Zhang X; Hu J; Li H; He S; Zhou Y; Abdel-Wahab O; Zhang DE; Fu XD
    Mol Cell; 2018 Feb; 69(3):412-425.e6. PubMed ID: 29395063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation.
    Rombaut D; Lefèvre C; Rached T; Bondu S; Letessier A; Mangione RM; Farhat B; Lesieur-Pasquier A; Castillo-Guzman D; Boussaid I; Friedrich C; Tourville A; De Carvalho M; Levavasseur F; Leduc M; Le Gall M; Battault S; Temple M; Houy A; Bouscary D; Willems L; Park S; Raynaud S; Cluzeau T; Clappier E; Fenaux P; Adès L; Margueron R; Wassef M; Alsafadi S; Chapuis N; Kosmider O; Solary E; Constantinou A; Stern MH; Droin N; Palancade B; Miotto B; Chédin F; Fontenay M
    Nat Commun; 2024 Apr; 15(1):3016. PubMed ID: 38589367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia.
    Shiozawa Y; Malcovati L; Gallì A; Sato-Otsubo A; Kataoka K; Sato Y; Watatani Y; Suzuki H; Yoshizato T; Yoshida K; Sanada M; Makishima H; Shiraishi Y; Chiba K; Hellström-Lindberg E; Miyano S; Ogawa S; Cazzola M
    Nat Commun; 2018 Sep; 9(1):3649. PubMed ID: 30194306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis.
    Yoshimi A; Lin KT; Wiseman DH; Rahman MA; Pastore A; Wang B; Lee SC; Micol JB; Zhang XJ; de Botton S; Penard-Lacronique V; Stein EM; Cho H; Miles RE; Inoue D; Albrecht TR; Somervaille TCP; Batta K; Amaral F; Simeoni F; Wilks DP; Cargo C; Intlekofer AM; Levine RL; Dvinge H; Bradley RK; Wagner EJ; Krainer AR; Abdel-Wahab O
    Nature; 2019 Oct; 574(7777):273-277. PubMed ID: 31578525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aberrant pre-mRNA splicing of a highly conserved cell cycle regulator, CDC25C, in myelodysplastic syndromes.
    Caudill JS; Porcher JC; Steensma DP
    Leuk Lymphoma; 2008 May; 49(5):989-93. PubMed ID: 18464119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genotoxic stress modulates CDC25C phosphatase alternative splicing in human breast cancer cell lines.
    Albert H; Battaglia E; Monteiro C; Bagrel D
    Mol Oncol; 2012 Oct; 6(5):542-52. PubMed ID: 22871320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serine-arginine splicing factor 2 promotes oesophageal cancer progression by regulating alternative splicing of interferon regulatory factor 3.
    Wei Z; Wang Y; Ma W; Xing W; Lu P; Shang Z; Li F; Li H; Wang Y
    RNA Biol; 2023 Jan; 20(1):359-367. PubMed ID: 37335045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.
    Pellagatti A; Boultwood J
    Adv Biol Regul; 2017 Jan; 63():59-70. PubMed ID: 27639445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution.
    Wu SJ; Kuo YY; Hou HA; Li LY; Tseng MH; Huang CF; Lee FY; Liu MC; Liu CW; Lin CT; Chen CY; Chou WC; Yao M; Huang SY; Ko BS; Tang JL; Tsay W; Tien HF
    Blood; 2012 Oct; 120(15):3106-11. PubMed ID: 22932795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes.
    Thol F; Kade S; Schlarmann C; Löffeld P; Morgan M; Krauter J; Wlodarski MW; Kölking B; Wichmann M; Görlich K; Göhring G; Bug G; Ottmann O; Niemeyer CM; Hofmann WK; Schlegelberger B; Ganser A; Heuser M
    Blood; 2012 Apr; 119(15):3578-84. PubMed ID: 22389253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tumor suppressor microRNAs are downregulated in myelodysplastic syndrome with spliceosome mutations.
    Aslan D; Garde C; Nygaard MK; Helbo AS; Dimopoulos K; Hansen JW; Severinsen MT; Treppendahl MB; Sjø LD; Grønbæk K; Kristensen LS
    Oncotarget; 2016 Mar; 7(9):9951-63. PubMed ID: 26848861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PARP inhibition leads to synthetic lethality with key splicing-factor mutations in myelodysplastic syndromes.
    Zhang F; Sun J; Zhang L; Li R; Wang Y; Geng H; Shen C; Li L; Chen L
    Br J Cancer; 2024 Jul; 131(2):231-242. PubMed ID: 38806724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.