BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27553074)

  • 1. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods.
    Lin X; Yang S; Lai K; Yang H; Webster TJ; Yang L
    Nanomedicine; 2017 Jan; 13(1):123-142. PubMed ID: 27553074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects.
    Jacobs A; Renaudin G; Forestier C; Nedelec JM; Descamps S
    Acta Biomater; 2020 Nov; 117():21-39. PubMed ID: 33007487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants].
    Liu P; Fan B; Zou L; Lü L; Gao Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Oct; 37(10):1300-1313. PubMed ID: 37848328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
    Ramaswamy Y; Wu C; Dunstan CR; Hewson B; Eindorf T; Anderson GI; Zreiqat H
    Acta Biomater; 2009 Oct; 5(8):3192-204. PubMed ID: 19457458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of titanium surface modification techniques and coatings for antibacterial applications.
    Chouirfa H; Bouloussa H; Migonney V; Falentin-Daudré C
    Acta Biomater; 2019 Jan; 83():37-54. PubMed ID: 30541702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ plasma fabrication of ceramic-like structure on polymeric implant with enhanced surface hardness, cytocompatibility and antibacterial capability.
    Liu J; Zhang W; Shi H; Yang K; Wang G; Wang P; Ji J; Chu PK
    J Biomed Mater Res A; 2016 May; 104(5):1102-12. PubMed ID: 26825052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial adhesion on orthopedic implants.
    Filipović U; Dahmane RG; Ghannouchi S; Zore A; Bohinc K
    Adv Colloid Interface Sci; 2020 Sep; 283():102228. PubMed ID: 32858407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants.
    Mas-Moruno C; Su B; Dalby MJ
    Adv Healthc Mater; 2019 Jan; 8(1):e1801103. PubMed ID: 30468010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional hydroxyapatite bioceramics with excellent osteoconductivity and stern-interface induced antibacterial ability.
    Shi C; Gao J; Wang M; Shao Y; Wang L; Wang D; Zhu Y
    Biomater Sci; 2016 Apr; 4(4):699-710. PubMed ID: 26883734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel.
    Liu Y; Zheng Z; Zara JN; Hsu C; Soofer DE; Lee KS; Siu RK; Miller LS; Zhang X; Carpenter D; Wang C; Ting K; Soo C
    Biomaterials; 2012 Dec; 33(34):8745-56. PubMed ID: 22959466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vancomycin Functionalized Nanoparticles for Bactericidal Biomaterial Surfaces.
    Pichavant L; Carrié H; Nguyen MN; Plawinski L; Durrieu MC; Héroguez V
    Biomacromolecules; 2016 Apr; 17(4):1339-46. PubMed ID: 26938371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings.
    He X; Zhang X; Bai L; Hang R; Huang X; Qin L; Yao X; Tang B
    Biomed Mater; 2016 Aug; 11(4):045008. PubMed ID: 27508428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early osteoblast responses to orthopedic implants: Synergy of surface roughness and chemistry of bioactive ceramic coating.
    Aniket ; Reid R; Hall B; Marriott I; El-Ghannam A
    J Biomed Mater Res A; 2015 Jun; 103(6):1961-73. PubMed ID: 25255702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial adherence and biofilm formation on medical implants: a review.
    Veerachamy S; Yarlagadda T; Manivasagam G; Yarlagadda PK
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1083-99. PubMed ID: 25406229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO.
    Razavi M; Fathi M; Savabi O; Vashaee D; Tayebi L
    J Mater Sci Mater Med; 2015 May; 26(5):184. PubMed ID: 25893390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications.
    Razavi M; Fathi M; Savabi O; Hashemi Beni B; Vashaee D; Tayebi L
    Colloids Surf B Biointerfaces; 2014 May; 117():432-40. PubMed ID: 24721316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing orthopedic implant bioactivity: refining the nanotopography.
    Wang G; Moya S; Lu Z; Gregurec D; Zreiqat H
    Nanomedicine (Lond); 2015; 10(8):1327-41. PubMed ID: 25955126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.
    Tian P; Xu D; Liu X
    Colloids Surf B Biointerfaces; 2016 May; 141():327-337. PubMed ID: 26874118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits.
    Liu D; He C; Liu Z; Xu W
    Int J Nanomedicine; 2017; 12():5461-5471. PubMed ID: 28814863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy.
    Chai H; Guo L; Wang X; Gao X; Liu K; Fu Y; Guan J; Tan L; Yang K
    J Biomed Mater Res A; 2012 Feb; 100(2):293-304. PubMed ID: 22045631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.