BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27553222)

  • 1. Transport and Catabolism of Pentitols by Listeria monocytogenes.
    Kentache T; Milohanic E; Cao TN; Mokhtari A; Aké FM; Ma Pham QM; Joyet P; Deutscher J
    J Mol Microbiol Biotechnol; 2016; 26(6):369-380. PubMed ID: 27553222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of a Listeria monocytogenes mutant deficient in D-arabitol fermentation.
    Saklani-Jusforgues H; Fontan E; Goossens PL
    Res Microbiol; 2001 Mar; 152(2):175-7. PubMed ID: 11316371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes.
    Zébré AC; Aké FM; Ventroux M; Koffi-Nevry R; Noirot-Gros MF; Deutscher J; Milohanic E
    J Bacteriol; 2015 May; 197(9):1559-72. PubMed ID: 25691525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression.
    Cao TN; Joyet P; Aké FMD; Milohanic E; Deutscher J
    J Mol Microbiol Biotechnol; 2019; 29(1-6):10-26. PubMed ID: 31269503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth.
    Stoll R; Goebel W
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1069-1083. PubMed ID: 20056707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pentitol metabolism in Lactobacillus casei.
    London J; Chace NM
    J Bacteriol; 1979 Dec; 140(3):949-54. PubMed ID: 118163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mannose phosphotransferase system permease and virulence gene expression in Listeria monocytogenes by the EII(t)Man transporter.
    Vu-Khac H; Miller KW
    Appl Environ Microbiol; 2009 Nov; 75(21):6671-8. PubMed ID: 19734332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of D- and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora.
    Doten RC; Mortlock RP
    Appl Environ Microbiol; 1985 Jan; 49(1):158-62. PubMed ID: 2983605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism.
    Huck JH; Roos B; Jakobs C; van der Knaap MS; Verhoeven NM
    Mol Genet Metab; 2004 Jul; 82(3):231-7. PubMed ID: 15234337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. 3. PHYSICAL AND IMMUNOLOGICAL PROPERTIES OF PENITOL DEHYDROGENASES AND PENTULOKINASES.
    MORTLOCK RP; FOSSITT DD; PETERING DH; WOOD WA
    J Bacteriol; 1965 Jan; 89(1):129-35. PubMed ID: 14255652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes.
    Mertins S; Joseph B; Goetz M; Ecke R; Seidel G; Sprehe M; Hillen W; Goebel W; Müller-Altrock S
    J Bacteriol; 2007 Jan; 189(2):473-90. PubMed ID: 17085572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the sugar alcohol-producing yeast Pichia anomala.
    Zhang G; Lin Y; He P; Li L; Wang Q; Ma Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):41-8. PubMed ID: 24170383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the mpo operon in resistance to class IIa bacteriocins in Listeria monocytogenes.
    Arous S; Dalet K; Héchard Y
    FEMS Microbiol Lett; 2004 Sep; 238(1):37-41. PubMed ID: 15336400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a unique sigma54-dependent PTS operon of the lactose family in Listeria monocytogenes.
    Dalet K; Arous S; Cenatiempo Y; Héchard Y
    Biochimie; 2003 Jul; 85(7):633-8. PubMed ID: 14505817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes.
    Aké FM; Joyet P; Deutscher J; Milohanic E
    Mol Microbiol; 2011 Jul; 81(1):274-93. PubMed ID: 21564334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans.
    Suzuki S; Sugiyama M; Mihara Y; Hashiguchi K; Yokozeki K
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2614-20. PubMed ID: 12596856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.
    Bourand A; Yebra MJ; Boël G; Mazé A; Deutscher J
    J Bacteriol; 2013 Jun; 195(11):2652-61. PubMed ID: 23564164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transaldolase/glucose-6-phosphate isomerase bifunctional enzyme and ribulokinase as factors to increase xylitol production from D-arabitol in Gluconobacter oxydans.
    Sugiyama M; Suzuki S; Tonouchi N; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2524-32. PubMed ID: 14730129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose.
    Mayer G; Kulbe KD; Nidetzky B
    Appl Biochem Biotechnol; 2002; 98-100():577-89. PubMed ID: 12018283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Arabitol catabolic pathway in Klebsiella aerogenes.
    Charnetzky WT; Mortlock RP
    J Bacteriol; 1974 Jul; 119(1):170-5. PubMed ID: 4366026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.