BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 27553234)

  • 1. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD).
    Hussain R; Siligardi G
    Adv Exp Med Biol; 2016; 922():43-59. PubMed ID: 27553234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy.
    Siligardi G; Hussain R; Patching SG; Phillips-Jones MK
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):34-42. PubMed ID: 23811229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-Ligand Interaction Monitored by Synchrotron Radiation Circular Dichroism.
    Hussain R; Hughes CS; Siligardi G
    Methods Mol Biol; 2020; 2089():87-118. PubMed ID: 31773649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-Denaturation Assay to Assess Protein Photostability and Ligand-Binding Interactions Using the High Photon Flux of Diamond B23 Beamline for SRCD.
    Hussain R; Longo E; Siligardi G
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30065161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of the intact FsrC membrane histidine kinase with its pheromone ligand GBAP revealed through synchrotron radiation circular dichroism.
    Patching SG; Edara S; Ma P; Nakayama J; Hussain R; Siligardi G; Phillips-Jones MK
    Biochim Biophys Acta; 2012 Jul; 1818(7):1595-602. PubMed ID: 22366202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular-dichroism and synchrotron-radiation circular-dichroism spectroscopy as tools to monitor protein structure in a lipid environment.
    Matsuo K; Gekko K
    Methods Mol Biol; 2013; 974():151-76. PubMed ID: 23404276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of sensor kinase by CD spectroscopy: golden rules and tips.
    Siligardi G; Hughes CS; Hussain R
    Biochem Soc Trans; 2018 Dec; 46(6):1627-1642. PubMed ID: 30514767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein characterisation by synchrotron radiation circular dichroism spectroscopy.
    Wallace BA
    Q Rev Biophys; 2009 Nov; 42(4):317-70. PubMed ID: 20450533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular-Dichroism and Synchrotron-Radiation Circular-Dichroism Spectroscopy as Tools to Monitor Protein Structure in a Lipid Environment.
    Matsuo K; Gekko K
    Methods Mol Biol; 2019; 2003():253-279. PubMed ID: 31218622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.
    Jávorfi T; Hussain R; Myatt D; Siligardi G
    Chirality; 2010; 22 Suppl 1():E149-53. PubMed ID: 21038386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics.
    Miles AJ; Wallace BA
    Chem Soc Rev; 2006 Jan; 35(1):39-51. PubMed ID: 16365641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchrotron radiation circular dichroism (SRCD) spectroscopy: an enhanced method for examining protein conformations and protein interactions.
    Wallace BA; Janes RW
    Biochem Soc Trans; 2010 Aug; 38(4):861-73. PubMed ID: 20658968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating protein:protein complex formation using synchrotron radiation circular dichroism spectroscopy.
    Cowieson NP; Miles AJ; Robin G; Forwood JK; Kobe B; Martin JL; Wallace BA
    Proteins; 2008 Mar; 70(4):1142-6. PubMed ID: 17894344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA.
    Bürck J; Roth S; Windisch D; Wadhwani P; Moss D; Ulrich AS
    J Synchrotron Radiat; 2015 May; 22(3):844-52. PubMed ID: 25931105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy.
    Wien F; Miles AJ; Lees JG; Vrønning Hoffmann S; Wallace BA
    J Synchrotron Radiat; 2005 Jul; 12(Pt 4):517-23. PubMed ID: 15968132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular Dichroism for the Analysis of Protein-DNA Interactions.
    Scarlett G; Siligardi G; Kneale GG
    Methods Mol Biol; 2015; 1334():299-312. PubMed ID: 26404158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantages of synchrotron radiation circular dichroism spectroscopy to study intrinsically disordered proteins.
    Kumagai PS; DeMarco R; Lopes JLS
    Eur Biophys J; 2017 Oct; 46(7):599-606. PubMed ID: 28258312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD spectroscopy: an essential tool for quality control of protein folding.
    Siligardi G; Hussain R
    Methods Mol Biol; 2015; 1261():255-76. PubMed ID: 25502204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic use of synchrotron radiation techniques for biological samples in solution: a case study on protein-ligand recognition by the peroxisomal import receptor Pex5p.
    Stanley WA; Sokolova A; Brown A; Clarke DT; Wilmanns M; Svergun DI
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):490-6. PubMed ID: 15496737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchrotron radiation circular dichroism spectroscopy: vacuum ultraviolet irradiation does not damage protein integrity.
    Orry AJ; Janes RW; Sarra R; Hanlon MR; Wallace BA
    J Synchrotron Radiat; 2001 May; 8(3):1027-9. PubMed ID: 11486408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.