These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27553525)

  • 1. Electrolysis of a molten semiconductor.
    Yin H; Chung B; Sadoway DR
    Nat Commun; 2016 Aug; 7():12584. PubMed ID: 27553525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anode electrolysis of sulfides.
    Qu J; Chen X; Xie H; Gao S; Wang D; Yin H
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2202884119. PubMed ID: 35878036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new anode material for oxygen evolution in molten oxide electrolysis.
    Allanore A; Yin L; Sadoway DR
    Nature; 2013 May; 497(7449):353-6. PubMed ID: 23657254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation.
    Telgerafchi AE; Rutherford M; Espinosa G; McArthur D; Masse N; Perrin B; Tang Z; Powell AC
    Front Chem; 2023; 11():1192202. PubMed ID: 37465359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural gas anodes for aluminium electrolysis in molten fluorides.
    Haarberg GM; Khalaghi B; Mokkelbost T
    Faraday Discuss; 2016 Aug; 190():71-84. PubMed ID: 27210046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling ZnTe, CdTe, and other compound semiconductors by ambipolar electrolysis.
    Bradwell DJ; Osswald S; Wei W; Barriga SA; Ceder G; Sadoway DR
    J Am Chem Soc; 2011 Dec; 133(49):19971-5. PubMed ID: 22035469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pure and Metal-confining Carbon Nanotubes through Electrochemical Reduction of Carbon Dioxide in Ca-based Molten Salts.
    Cao J; Jing S; Wang H; Xu W; Zhang M; Xiao J; Peng Y; Ning X; Wang Z; Xiao W
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306877. PubMed ID: 37278885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.
    Deng B; Chen Z; Gao M; Song Y; Zheng K; Tang J; Xiao W; Mao X; Wang D
    Faraday Discuss; 2016 Aug; 190():241-58. PubMed ID: 27193751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microplasma Anode Meeting Molten Salt Electrochemistry: Charge Transfer and Atomic Emission Spectral Analysis.
    Wei G; Liu X; Lu Y; Wang Z; Liu S; Ye G; Chen J
    Anal Chem; 2018 Nov; 90(22):13163-13166. PubMed ID: 30387345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
    Yuan Y; Li W; Chen H; Wang Z; Jin X; Chen GZ
    Faraday Discuss; 2016 Aug; 190():85-96. PubMed ID: 27203663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Influence of CaO on the Electrochemical Reduction of Fe
    Li H; Song L; Liang J; Huo D; Cao W; Liu C
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the role of substrate materials in governing the carbon/carbide growth of molten carbonate electrolysis of CO
    Yu R; Du K; Deng B; Yin H; Wang D
    Nanoscale; 2023 Nov; 15(46):18707-18715. PubMed ID: 37953684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO
    Gao Y; Yang C; Zhang C; Qin Q; Chen GZ
    Phys Chem Chem Phys; 2017 Jun; 19(24):15876-15890. PubMed ID: 28589201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolysis Synthesis of Carbides and Carbon Dioxide Capture in Molten Salts.
    Ren Y; Li S; Lv Z; Fan Y; He J; Song J
    Small; 2023 Jun; 19(23):e2207863. PubMed ID: 36890770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data on SEM, TEM and Raman Spectra of doped, and wool carbon nanotubes made directly from CO
    Johnson M; Ren J; Lefler M; Licht G; Vicini J; Licht S
    Data Brief; 2017 Oct; 14():592-606. PubMed ID: 28879217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts.
    Snook GA; McGregor K; Urban AJ; Lanyon MR; Donelson R; Pownceby MI
    Faraday Discuss; 2016 Aug; 190():35-52. PubMed ID: 27265026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride.
    Chen GZ; Fray DJ; Farthing TW
    Nature; 2000 Sep; 407(6802):361-4. PubMed ID: 11014188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of metal sulfide syntheses and the dissolution process of antimony sulfide in phosphonium-based ionic liquids.
    Grasser MA; Pietsch T; Brunner E; Ruck M
    Dalton Trans; 2022 Mar; 51(10):4079-4086. PubMed ID: 35179150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Elemental Fluorine through the Electrolysis of Copper Difluoride at Room Temperature.
    Matsumoto K; Shima K; Sugimoto T; Inoue T; Hagiwara R
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7887-7892. PubMed ID: 33428321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.