BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 27553633)

  • 1. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis.
    Hadariová L; Vesteg M; Birčák E; Schwartzbach SD; Krajčovič J
    Curr Genet; 2017 May; 63(2):331-341. PubMed ID: 27553633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cryptic Plastid of
    Füssy Z; Záhonová K; Tomčala A; Krajčovič J; Yurchenko V; Oborník M; Eliáš M
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33087518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and comparative analysis of the chloroplast alpha-subunit gene of DNA-dependent RNA polymerase from seven Euglena species.
    Sheveleva EV; Giordani NV; Hallick RB
    Nucleic Acids Res; 2002 Mar; 30(5):1247-54. PubMed ID: 11861918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis.
    Záhonová K; Hadariová L; Vacula R; Yurchenko V; Eliáš M; Krajčovič J; Vesteg M
    FEBS Lett; 2014 Mar; 588(5):783-8. PubMed ID: 24492004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation.
    Záhonová K; Füssy Z; Oborník M; Eliáš M; Yurchenko V
    PLoS One; 2016; 11(7):e0158790. PubMed ID: 27391690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of streptomycin bleaching of Euglena gracilis by mutagenic concentrations of hydroxylamine.
    Ebringer L; Mego JL; Podova G
    Biochem Biophys Res Commun; 1967 Nov; 29(4):571-5. PubMed ID: 16496537
    [No Abstract]   [Full Text] [Related]  

  • 7. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses.
    Záhonová K; Füssy Z; Birčák E; Novák Vanclová AMG; Klimeš V; Vesteg M; Krajčovič J; Oborník M; Eliáš M
    Sci Rep; 2018 Nov; 8(1):17012. PubMed ID: 30451959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Organization of ribosomal DNA from the phytoflagellates Astasia longa and Euglena gracilis: comparison of the structure of 19S and 28S rRNA genes].
    Zaĭtseva GN; Oparina NIu; Kagramanova VV; Kleshchenko EV
    Mol Biol (Mosk); 1995; 29(3):546-52. PubMed ID: 8552059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa.
    Gockel G; Hachtel W
    Protist; 2000 Dec; 151(4):347-51. PubMed ID: 11212895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleus-encoded mRNAs for chloroplast proteins GapA, PetA, and PsbO are trans-spliced in the flagellate Euglena gracilis irrespective of light and plastid function.
    Mateášiková-Kováčová B; Vesteg M; Drahovská H; Záhonová K; Vacula R; Krajčovič J
    J Eukaryot Microbiol; 2012; 59(6):651-3. PubMed ID: 22726219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genes for ribosomal proteins are retained on the 73 kb DNA from Astasia longa that resembles Euglena chloroplast DNA.
    Siemeister G; Buchholz C; Hachtel W
    Curr Genet; 1990 Dec; 18(5):457-64. PubMed ID: 2078869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of wax ester fermentation in natural and bleached Euglena gracilis Strains in response to oxygen and the elongase inhibitor flufenacet.
    Tucci S; Vacula R; Krajcovic J; Proksch P; Martin W
    J Eukaryot Microbiol; 2010; 57(1):63-9. PubMed ID: 20015184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia.
    Kim JI; Yoon HS; Yi G; Kim HS; Yih W; Shin W
    PLoS One; 2015; 10(6):e0129284. PubMed ID: 26047475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome, proteome and draft genome of Euglena gracilis.
    Ebenezer TE; Zoltner M; Burrell A; Nenarokova A; Novák Vanclová AMG; Prasad B; Soukal P; Santana-Molina C; O'Neill E; Nankissoor NN; Vadakedath N; Daiker V; Obado S; Silva-Pereira S; Jackson AP; Devos DP; Lukeš J; Lebert M; Vaughan S; Hampl V; Carrington M; Ginger ML; Dacks JB; Kelly S; Field MC
    BMC Biol; 2019 Feb; 17(1):11. PubMed ID: 30732613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    Protist; 2012 Nov; 163(6):832-43. PubMed ID: 22364772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.
    Thompson MD; Copertino DW; Thompson E; Favreau MR; Hallick RB
    Nucleic Acids Res; 1995 Dec; 23(23):4745-52. PubMed ID: 8532514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences.
    Durnford DG; Gray MW
    Eukaryot Cell; 2006 Dec; 5(12):2079-91. PubMed ID: 16998072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids.
    Hrdá Š; Fousek J; Szabová J; Hampl V; Vlček Č
    PLoS One; 2012; 7(3):e33746. PubMed ID: 22448269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Lipid Composition of
    Tomečková L; Tomčala A; Oborník M; Hampl V
    Plant Physiol; 2020 Dec; 184(4):2052-2063. PubMed ID: 33008834
    [No Abstract]   [Full Text] [Related]  

  • 20. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa.
    Gockel G; Hachtel W; Baier S; Fliss C; Henke M
    Curr Genet; 1994 Sep; 26(3):256-62. PubMed ID: 7859309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.