These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27553908)

  • 1. Key factors of eddy current separation for recovering aluminum from crushed e-waste.
    Ruan J; Dong L; Zheng J; Zhang T; Huang M; Xu Z
    Waste Manag; 2017 Feb; 60():84-90. PubMed ID: 27553908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaches to improve separation efficiency of eddy current separation for recovering aluminum from waste toner cartridges.
    Ruan J; Xu Z
    Environ Sci Technol; 2012 Jun; 46(11):6214-21. PubMed ID: 22571825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new model of repulsive force in eddy current separation for recovering waste toner cartridges.
    Ruan J; Xu Z
    J Hazard Mater; 2011 Aug; 192(1):307-13. PubMed ID: 21632177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Bai Y; Gao S; Gao Y
    Waste Manag; 2019 Dec; 100():1-9. PubMed ID: 31493683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; He S; Gao Y; Peng J
    Waste Manag Res; 2019 Aug; 37(8):767-780. PubMed ID: 31218930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental friendly automated line for recovering the cabinet of waste refrigerator.
    Ruan J; Xu Z
    Waste Manag; 2011 Nov; 31(11):2319-26. PubMed ID: 21782408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent identification of fragmented non-magnetic materials for end-of-life refrigerator recycling.
    Li J; Cao Y; Zheng H; Hu X; Bao J; Zhang K
    J Air Waste Manag Assoc; 2024 Jan; 74(1):25-38. PubMed ID: 37843255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct recovery of copper and aluminum from waste electric wires using a roll-type electrostatic separator.
    Salama A; Richard G; Medles K; Zeghloul T; Dascalescu L
    Waste Manag; 2018 Jun; 76():207-216. PubMed ID: 29605307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separating and recovering Pb from copper-rich particles of crushed waste printed circuit boards by evaporation and condensation.
    Zhan L; Xu Z
    Environ Sci Technol; 2011 Jun; 45(12):5359-65. PubMed ID: 21595432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminium recovery from waste incineration bottom ash, and its oxidation level.
    Biganzoli L; Grosso M
    Waste Manag Res; 2013 Sep; 31(9):954-9. PubMed ID: 23831779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.
    Xue M; Yan G; Li J; Xu Z
    Environ Sci Technol; 2012 Oct; 46(19):10556-63. PubMed ID: 22924535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Informal electronic waste recycling: a sector review with special focus on China.
    Chi X; Streicher-Porte M; Wang MY; Reuter MA
    Waste Manag; 2011 Apr; 31(4):731-42. PubMed ID: 21147524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.
    Li J; Xu Z; Zhou Y
    J Hazard Mater; 2008 May; 153(3):1308-13. PubMed ID: 17981393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical pre-treatment of mobile phones and its effect on the Printed Circuit Assemblies (PCAs).
    Bachér J; Mrotzek A; Wahlström M
    Waste Manag; 2015 Nov; 45():235-45. PubMed ID: 26139137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.
    Zhang S; Ding Y; Liu B; Pan D; Chang CC; Volinsky AA
    Waste Manag; 2015 Nov; 45():361-73. PubMed ID: 26059074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.
    Li J; Wu G; Xu Z
    Waste Manag; 2015 Jan; 35():36-41. PubMed ID: 25453321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.