BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27553945)

  • 1. Risk of fire occurrence in arid and semi-arid ecosystems of Iran: an investigation using Bayesian belief networks.
    Bashari H; Naghipour AA; Khajeddin SJ; Sangoony H; Tahmasebi P
    Environ Monit Assess; 2016 Sep; 188(9):531. PubMed ID: 27553945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood.
    Pimont F; Fargeon H; Opitz T; Ruffault J; Barbero R; Martin-StPaul N; Rigolot E; RiviÉre M; Dupuy JL
    Ecol Appl; 2021 Jul; 31(5):e02316. PubMed ID: 33636026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing best-practice Bayesian Belief Networks in ecological risk assessments for freshwater and estuarine ecosystems: a quantitative review.
    McDonald KS; Ryder DS; Tighe M
    J Environ Manage; 2015 May; 154():190-200. PubMed ID: 25733196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites.
    Thomsen NI; Binning PJ; McKnight US; Tuxen N; Bjerg PL; Troldborg M
    J Contam Hydrol; 2016 May; 188():12-28. PubMed ID: 26950254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of antecedent fire area on burned area in southern California coastal ecosystems.
    Price OF; Bradstock RA; Keeley JE; Syphard AD
    J Environ Manage; 2012 Dec; 113():301-7. PubMed ID: 23064248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting fire responses to climate and management: insights from two Australian ecosystems.
    King KJ; Cary GJ; Bradstock RA; Marsden-Smedley JB
    Glob Chang Biol; 2013 Apr; 19(4):1223-35. PubMed ID: 23504898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty and risk in wildland fire management: a review.
    Thompson MP; Calkin DE
    J Environ Manage; 2011 Aug; 92(8):1895-909. PubMed ID: 21489684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causal Bayesian networks in assessments of wildfire risks: Opportunities for ecological risk assessment and management.
    Carriger JF; Thompson M; Barron MG
    Integr Environ Assess Manag; 2021 Nov; 17(6):1168-1178. PubMed ID: 33991051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fire-susceptibility mapping in the natural areas of Iran using new and ensemble data-mining models.
    Eskandari S; Pourghasemi HR; Tiefenbacher JP
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47395-47406. PubMed ID: 33891241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of fuels, weather and the built environment on the exposure of property to wildfire.
    Penman TD; Collins L; Syphard AD; Keeley JE; Bradstock RA
    PLoS One; 2014; 9(10):e111414. PubMed ID: 25360741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can a Bayesian Belief Network Be Used to Estimate 1-year Survival in Patients With Bone Sarcomas?
    Nandra R; Parry M; Forsberg J; Grimer R
    Clin Orthop Relat Res; 2017 Jun; 475(6):1681-1689. PubMed ID: 28397168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing wildfire impact on Trigonella elliptica habitat using random forest modeling.
    Moradi E; Tavili A; Darabi H; Muchová Z
    J Environ Manage; 2024 Feb; 353():120209. PubMed ID: 38295633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling wildfire risk in western Iran based on the integration of AHP and GIS.
    Nasiri V; Sadeghi SMM; Bagherabadi R; Moradi F; Deljouei A; Borz SA
    Environ Monit Assess; 2022 Aug; 194(9):644. PubMed ID: 35930117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatio-temporal analysis of fire recurrence and extent for semi-arid savanna ecosystems in Southern Africa using moderate-resolution satellite imagery.
    Pricope NG; Binford MW
    J Environ Manage; 2012 Jun; 100():72-85. PubMed ID: 22366360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.
    Syphard AD; Radeloff VC; Hawbaker TJ; Stewart SI
    Conserv Biol; 2009 Jun; 23(3):758-69. PubMed ID: 22748094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management thresholds stemming from altered fire dynamics in present-day arid and semi-arid environments.
    Aslan CE; Samberg L; Dickson BG; Gray ME
    J Environ Manage; 2018 Dec; 227():87-94. PubMed ID: 30172162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian decision network modeling for environmental risk management: A wildfire case study.
    Penman TD; Cirulis B; Marcot BG
    J Environ Manage; 2020 Sep; 270():110735. PubMed ID: 32721285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fire management strategies to maintain species population processes in a fragmented landscape of fire-interval extremes.
    Tulloch AI; Pichancourt JB; Gosper CR; Sanders A; Chadès I
    Ecol Appl; 2016 Oct; 26(7):2175-2189. PubMed ID: 27755728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability.
    Jaafari A; Razavi Termeh SV; Bui DT
    J Environ Manage; 2019 Aug; 243():358-369. PubMed ID: 31103681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthesis of postfire recovery traits of woody plants in Australian ecosystems.
    Clarke PJ; Lawes MJ; Murphy BP; Russell-Smith J; Nano CE; Bradstock R; Enright NJ; Fontaine JB; Gosper CR; Radford I; Midgley JJ; Gunton RM
    Sci Total Environ; 2015 Nov; 534():31-42. PubMed ID: 25887372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.