BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 27554024)

  • 41. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients.
    Creasy A; Barker G; Carta G
    Biotechnol J; 2017 Mar; 12(3):. PubMed ID: 27992113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein adsorption on ion exchange resins and monoclonal antibody charge variant modulation.
    Guélat B; Khalaf R; Lattuada M; Costioli M; Morbidelli M
    J Chromatogr A; 2016 May; 1447():82-91. PubMed ID: 27086285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A thermodynamic evaluation of antibody-surface interactions in multimodal cation exchange chromatography.
    Gudhka RB; Roush DJ; Cramer SM
    J Chromatogr A; 2020 Sep; 1628():461479. PubMed ID: 32822997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isoform Separation by a Mixed-mode Resin, TOYOPEARL MX-Trp-650M.
    Arakawa T
    Curr Protein Pept Sci; 2019; 20(1):61-64. PubMed ID: 28990530
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mixed Mode Chromatography: A Novel Way Toward New Selectivity.
    Santarelli X; Cabanne C
    Curr Protein Pept Sci; 2019; 20(1):14-21. PubMed ID: 29065829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.
    Zimmermann A; Greco R; Walker I; Horak J; Cavazzini A; Lämmerhofer M
    J Chromatogr A; 2014 Aug; 1354():43-55. PubMed ID: 24929908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach.
    Fekete S; Beck A; Fekete J; Guillarme D
    J Pharm Biomed Anal; 2015 Jan; 102():282-9. PubMed ID: 25459925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of arginine on multimodal anion exchange chromatography.
    Hirano A; Arakawa T; Kameda T
    Protein Expr Purif; 2015 Dec; 116():105-12. PubMed ID: 26225914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A microcalorimetric study of molecular interactions between immunoglobulin G and hydrophobic charge-induction ligand.
    Yuan XM; Lin DQ; Zhang QL; Gao D; Yao SJ
    J Chromatogr A; 2016 Apr; 1443():145-51. PubMed ID: 27017449
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-performance liquid chromatography of amino acids, peptides and proteins. LXXXVII. Comparison of retention and bandwidth properties of proteins eluted by gradient and isocratic anion-exchange chromatography.
    Hearn MT; Hodder AN; Aguilar MI
    J Chromatogr; 1988 Dec; 458():27-44. PubMed ID: 3235638
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isoform separation of proteins by mixed-mode chromatography.
    Arakawa T; Ponce S; Young G
    Protein Expr Purif; 2015 Dec; 116():144-51. PubMed ID: 26278821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.
    Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD
    J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Systematic Interpolation Method Predicts Antibody Monomer-Dimer Separation by Gradient Elution Chromatography at High Protein Loads.
    Creasy A; Reck J; Pabst T; Hunter A; Barker G; Carta G
    Biotechnol J; 2019 Mar; 14(3):e1800132. PubMed ID: 29809318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantifying orthogonality and separability: A method for optimizing resin selection and design.
    Bilodeau CL; Vecchiarello NA; Altern S; Cramer SM
    J Chromatogr A; 2020 Sep; 1628():461429. PubMed ID: 32822971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Arginine on Multimodal Chromatography: Experiments and Simulations.
    Hirano A; Shiraki K; Kameda T
    Curr Protein Pept Sci; 2019; 20(1):40-48. PubMed ID: 29065827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.
    Wang G; Hahn T; Hubbuch J
    J Chromatogr A; 2016 Sep; 1465():71-8. PubMed ID: 27575919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands.
    Woo JA; Chen H; Snyder MA; Chai Y; Frost RG; Cramer SM
    J Chromatogr A; 2015 Aug; 1407():58-68. PubMed ID: 26162668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly selective Protein A resin allows for mild sodium chloride-mediated elution of antibodies.
    Scheffel J; Hober S
    J Chromatogr A; 2021 Jan; 1637():461843. PubMed ID: 33412291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 2: Evaluation of recent stationary phases.
    Murisier A; Farsang E; Horváth K; Lauber M; Beck A; Guillarme D; Fekete S
    J Pharm Biomed Anal; 2019 Aug; 172():320-328. PubMed ID: 31085394
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of pH on antibody retention in multimodal cation exchange chromatographic systems.
    Robinson J; Roush D; Cramer SM
    J Chromatogr A; 2020 Apr; 1617():460838. PubMed ID: 31932086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.