These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 27554024)

  • 121. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.
    Li M; Li Y; Yu L; Sun Y
    J Chromatogr A; 2017 Feb; 1486():103-109. PubMed ID: 27852454
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Comparison of chromatographic ion-exchange resins. II. More strong anion-exchange resins.
    Staby A; Jensen IH
    J Chromatogr A; 2001 Jan; 908(1-2):149-61. PubMed ID: 11218117
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Retention profiles and mechanism of anion separation on latex-based pellicular ion exchanger in ion chromatography.
    Horváth K; Hajós P
    J Chromatogr A; 2006 Feb; 1104(1-2):75-81. PubMed ID: 16337639
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: effects of resin type, load buffer, and protein stability.
    Guo J; Carta G
    J Chromatogr A; 2015 Apr; 1388():184-94. PubMed ID: 25739785
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Separation of protein charge variants with induced pH gradients using anion exchange chromatographic columns.
    Pabst TM; Carta G; Ramasubramanyan N; Hunter AK; Mensah P; Gustafson ME
    Biotechnol Prog; 2008; 24(5):1096-106. PubMed ID: 19194919
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Retention Mechanism of Proteins in Hydroxyapatite Chromatography - Multimodal Interaction Based Protein Separations: A Model Study.
    Itoh D; Yoshimoto N; Yamamoto S
    Curr Protein Pept Sci; 2019; 20(1):75-81. PubMed ID: 29065831
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Salt tolerant membrane adsorbers for robust impurity clearance.
    Riordan WT; Heilmann SM; Brorson K; Seshadri K; Etzel MR
    Biotechnol Prog; 2009; 25(6):1695-702. PubMed ID: 19728393
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Effects of resin ligand density on yield and impurity clearance in preparative cation exchange chromatography. II. Process characterization.
    Fogle J; Persson J
    J Chromatogr A; 2012 Feb; 1225():70-8. PubMed ID: 22265171
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Hydrophobic charge-induction resin with 5-aminobenzimidazol as the functional ligand: preparation, protein adsorption and immunoglobulin G purification.
    Yan J; Zhang QL; Tong HF; Lin DQ; Yao SJ
    J Sep Sci; 2015 Jul; 38(14):2387-93. PubMed ID: 25929749
    [TBL] [Abstract][Full Text] [Related]  

  • 130. A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography.
    Poplewska I; Piątkowski W; Antos D
    J Chromatogr A; 2021 Jan; 1636():461687. PubMed ID: 33246679
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Mixed Mode Chromatography, Complex Development for Large Opportunities.
    Cabanne C; Santarelli X
    Curr Protein Pept Sci; 2019; 20(1):22-27. PubMed ID: 29086691
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.
    Rüdt M; Gillet F; Heege S; Hitzler J; Kalbfuss B; Guélat B
    J Chromatogr A; 2015 Sep; 1413():68-76. PubMed ID: 26306913
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Comparison of chromatographic ion-exchange resins. I. Strong anion-exchange resins.
    Staby A; Jensen IH; Mollerup I
    J Chromatogr A; 2000 Nov; 897(1-2):99-111. PubMed ID: 11128229
    [TBL] [Abstract][Full Text] [Related]  

  • 134. An accelerated approach for mechanistic model based prediction of linear gradient elution ion-exchange chromatography of proteins.
    Shekhawat LK; Tiwari A; Yamamoto S; Rathore AS
    J Chromatogr A; 2022 Sep; 1680():463423. PubMed ID: 36001907
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Application of the Steric Mass Action formalism for modeling under high loading conditions: Part 1. Investigation of the influence of pH on the steric shielding factor.
    Seelinger F; Wittkopp F; von Hirschheydt T; Hafner M; Frech C
    J Chromatogr A; 2022 Aug; 1676():463265. PubMed ID: 35779394
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Application of pH-salt dual gradient elution in purifying a WuXiBody-based bispecific antibody by MMC ImpRes mixed-mode chromatography.
    Wan Y; Wang Y; Zhang T; Zhang S; Wang Y; Li Y
    Protein Expr Purif; 2021 May; 181():105822. PubMed ID: 33429037
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Evaluation of guanidine-based multimodal anion exchangers for protein selectivity and orthogonality.
    Koley S; Altern SH; Vats M; Han X; Jang D; Snyder MA; Belisle C; Cramer SM
    J Chromatogr A; 2021 Sep; 1653():462398. PubMed ID: 34280791
    [TBL] [Abstract][Full Text] [Related]  

  • 138. A novel method for continuous chromatographic separation of monoclonal antibody charge variants by combining displacement mode chromatography and step elution.
    Anupa A; Bansode V; Kateja N; Rathore AS
    Biotechnol Prog; 2024; 40(1):e3395. PubMed ID: 37828820
    [TBL] [Abstract][Full Text] [Related]  

  • 139. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces.
    Woo J; Parimal S; Brown MR; Heden R; Cramer SM
    J Chromatogr A; 2015 Sep; 1412():33-42. PubMed ID: 26292626
    [TBL] [Abstract][Full Text] [Related]  

  • 140. High-capacity multimodal anion-exchange membranes for polishing of therapeutic proteins.
    Osuofa J; Henn D; Zhou J; Forsyth A; Husson SM
    Biotechnol Prog; 2021 May; 37(3):e3129. PubMed ID: 33475239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.