BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27554293)

  • 1. Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung.
    Woodworth JS; Cohen SB; Moguche AO; Plumlee CR; Agger EM; Urdahl KB; Andersen P
    Mucosal Immunol; 2017 Mar; 10(2):555-564. PubMed ID: 27554293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T Cells Primed by Live Mycobacteria Versus a Tuberculosis Subunit Vaccine Exhibit Distinct Functional Properties.
    Lindenstrøm T; Moguche A; Damborg M; Agger EM; Urdahl K; Andersen P
    EBioMedicine; 2018 Jan; 27():27-39. PubMed ID: 29249639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder.
    Thakur A; Ingvarsson PT; Schmidt ST; Rose F; Andersen P; Christensen D; Foged C
    Vaccine; 2018 May; 36(23):3331-3339. PubMed ID: 29699790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrapulmonary (i.pulmon.) Pull Immunization With the Tuberculosis Subunit Vaccine Candidate H56/CAF01 After Intramuscular (i.m.) Priming Elicits a Distinct Innate Myeloid Response and Activation of Antigen-Presenting Cells Than i.m. or i.pulmon. Prime Immunization Alone.
    Thakur A; Pinto FE; Hansen HS; Andersen P; Christensen D; Janfelt C; Foged C
    Front Immunol; 2020; 11():803. PubMed ID: 32457748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mucosal boosting of H56:CAF01 immunization promotes lung-localized T cells and an accelerated pulmonary response to Mycobacterium tuberculosis infection without enhancing vaccine protection.
    Woodworth JS; Christensen D; Cassidy JP; Agger EM; Mortensen R; Andersen P
    Mucosal Immunol; 2019 May; 12(3):816-826. PubMed ID: 30760832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine expressing a fusion protein of Ag85B-Esat6-HspX in mice.
    Yuan W; Dong N; Zhang L; Liu J; Lin S; Xiang Z; Qiao H; Tong W; Qin C
    Vaccine; 2012 Mar; 30(14):2490-7. PubMed ID: 21704108
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Clemmensen HS; Dube JY; McIntosh F; Rosenkrands I; Jungersen G; Aagaard C; Andersen P; Behr MA; Mortensen R
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Isotope SPECT/CT Imaging of the Tuberculosis Subunit Vaccine H56/CAF01: Induction of Strong Systemic and Mucosal IgA and T-Cell Responses in Mice Upon Subcutaneous Prime and Intrapulmonary Boost Immunization.
    Thakur A; Rodríguez-Rodríguez C; Saatchi K; Rose F; Esposito T; Nosrati Z; Andersen P; Christensen D; Häfeli UO; Foged C
    Front Immunol; 2018; 9():2825. PubMed ID: 30555488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells.
    Sakai S; Kauffman KD; Schenkel JM; McBerry CC; Mayer-Barber KD; Masopust D; Barber DL
    J Immunol; 2014 Apr; 192(7):2965-9. PubMed ID: 24591367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.
    Moguche AO; Musvosvi M; Penn-Nicholson A; Plumlee CR; Mearns H; Geldenhuys H; Smit E; Abrahams D; Rozot V; Dintwe O; Hoff ST; Kromann I; Ruhwald M; Bang P; Larson RP; Shafiani S; Ma S; Sherman DR; Sette A; Lindestam Arlehamn CS; McKinney DM; Maecker H; Hanekom WA; Hatherill M; Andersen P; Scriba TJ; Urdahl KB
    Cell Host Microbe; 2017 Jun; 21(6):695-706.e5. PubMed ID: 28618268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of epitope recognition pattern in Ag85B and ESAT-6 has a profound influence on vaccine-induced protection against Mycobacterium tuberculosis.
    Bennekov T; Dietrich J; Rosenkrands I; Stryhn A; Doherty TM; Andersen P
    Eur J Immunol; 2006 Dec; 36(12):3346-55. PubMed ID: 17109467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The LTK63 adjuvant improves protection conferred by Ag85B DNA-protein prime-boosting vaccination against Mycobacterium tuberculosis infection by dampening IFN-gamma response.
    Palma C; Iona E; Giannoni F; Pardini M; Brunori L; Fattorini L; Del Giudice G; Cassone A
    Vaccine; 2008 Aug; 26(33):4237-43. PubMed ID: 18584925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ΔfbpA attenuated candidate vaccine from Mycobacterium tuberculosis, H37Rv primes for a stronger T-bet dependent Th1 immunity in mice.
    Roche CM; Smith A; Lindsey DR; Meher A; Schluns K; Arora A; Armitige LY; Jagannath C
    Tuberculosis (Edinb); 2011 Dec; 91 Suppl 1():S96-104. PubMed ID: 22082615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination.
    Elvang T; Christensen JP; Billeskov R; Thi Kim Thanh Hoang T; Holst P; Thomsen AR; Andersen P; Dietrich J
    PLoS One; 2009; 4(4):e5139. PubMed ID: 19357780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice.
    Palma C; Iona E; Giannoni F; Pardini M; Brunori L; Orefici G; Fattorini L; Cassone A
    Cell Microbiol; 2007 Jun; 9(6):1455-65. PubMed ID: 17250590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa.
    Perez-Martinez AP; Ong E; Zhang L; Marrs CF; He Y; Yang Z
    Infect Genet Evol; 2017 Nov; 55():244-250. PubMed ID: 28941991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults.
    Luabeya AK; Kagina BM; Tameris MD; Geldenhuys H; Hoff ST; Shi Z; Kromann I; Hatherill M; Mahomed H; Hanekom WA; Andersen P; Scriba TJ; ; Schoeman E; Krohn C; Day CL; Africa H; Makhethe L; Smit E; Brown Y; Suliman S; Hughes EJ; Bang P; Snowden MA; McClain B; Hussey GD
    Vaccine; 2015 Aug; 33(33):4130-40. PubMed ID: 26095509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vaccination for Mycobacterium tuberculosis infection: reprogramming CD4 T-cell homing into the lung.
    Barber DL
    Mucosal Immunol; 2017 Mar; 10(2):318-321. PubMed ID: 27966550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toll like-receptor agonist Pam
    Kennerknecht K; Noschka R; Löffler F; Wehrstedt S; Pedersen GK; Mayer D; Grieshober M; Christensen D; Stenger S
    Med Microbiol Immunol; 2020 Apr; 209(2):163-176. PubMed ID: 32020284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques.
    Kauffman KD; Sallin MA; Sakai S; Kamenyeva O; Kabat J; Weiner D; Sutphin M; Schimel D; Via L; Barry CE; Wilder-Kofie T; Moore I; Moore R; Barber DL
    Mucosal Immunol; 2018 Mar; 11(2):462-473. PubMed ID: 28745326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.