These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27554459)

  • 1. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe
    Winkler F; Tavabi AH; Barthel J; Duchamp M; Yucelen E; Borghardt S; Kardynal BE; Dunin-Borkowski RE
    Ultramicroscopy; 2017 Jul; 178():38-47. PubMed ID: 27554459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Mean Inner Potential and Inelastic Mean Free Path of ZnTe Using Off-Axis Electron Holography and Dynamical Effects Affecting Phase Determination.
    Gan Z; DiNezza M; Zhang YH; Smith DJ; McCartney MR
    Microsc Microanal; 2015 Dec; 21(6):1406-1412. PubMed ID: 26611637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.
    Somodi PK; Twitchett-Harrison AC; Midgley PA; Kardynał BE; Barnes CH; Dunin-Borkowski RE
    Ultramicroscopy; 2013 Nov; 134():160-6. PubMed ID: 23953735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Field Mapping using Off-Axis Electron Holography in the Transmission Electron Microscope.
    Zheng F; Kovács A; Denneulin T; Caron J; Weßels T; Dunin-Borkowski RE
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33346200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the electrical properties of semiconductor junctions--the electron holographic approach.
    Twitchett-Harrison AC; Dunin-Borkowski RE; Midgley PA
    Scanning; 2008; 30(4):299-309. PubMed ID: 18642298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Agreement between Electron-Optical Phase Images of WSe_{2} and Simulations Based on Electrostatic Potentials that Include Bonding Effects.
    Borghardt S; Winkler F; Zanolli Z; Verstraete MJ; Barthel J; Tavabi AH; Dunin-Borkowski RE; Kardynal BE
    Phys Rev Lett; 2017 Feb; 118(8):086101. PubMed ID: 28282203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution.
    Winkler F; Barthel J; Tavabi AH; Borghardt S; Kardynal BE; Dunin-Borkowski RE
    Phys Rev Lett; 2018 Apr; 120(15):156101. PubMed ID: 29756849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying mean inner potential of ZnO nanowires by off-axis electron holography.
    Ding Y; Liu Y; Pradel KC; Bando Y; Fukata N; Wang ZL
    Micron; 2015 Nov; 78():67-72. PubMed ID: 26277083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of phonon scattering to high-resolution images measured by off-axis electron holography.
    Boothroyd CB; Dunin-Borkowski RE
    Ultramicroscopy; 2004 Jan; 98(2-4):115-33. PubMed ID: 15046791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the mean inner potential of Al
    Auslender A; Halabi M; Levi G; Diéguez O; Kohn A
    Ultramicroscopy; 2019 Mar; 198():18-25. PubMed ID: 30634077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique determination of boundary condition in quantitative electron diffraction: Application to accurate measurements of mean inner potentials.
    Wu L; Schofield MA; Zhu Y; Tafto J
    Ultramicroscopy; 2004 Jan; 98(2-4):135-43. PubMed ID: 15046792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.
    Rubino S; Akhtar S; Leifer K
    Microsc Microanal; 2016 Feb; 22(1):250-6. PubMed ID: 26915000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of mean inner potential of germanium using off-axis electron holography.
    Li J; McCartney MR; Dunin-Borkowski RE; Smith DJ
    Acta Crystallogr A; 1999 Jul; 55(Pt 4):652-658. PubMed ID: 10927276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for quantitative and time-resolved double and continuous exposure off-axis electron holography.
    Migunov V; Dwyer C; Boothroyd CB; Pozzi G; Dunin-Borkowski RE
    Ultramicroscopy; 2017 Jul; 178():48-61. PubMed ID: 27638333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of localized visibility in off-axis electron holography.
    McLeod RA; Kupsta M; Malac M
    Ultramicroscopy; 2014 Mar; 138():4-12. PubMed ID: 24370949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Mapping of the Charge Density in a Monolayer of MoS
    Boureau V; Sklenard B; McLeod R; Ovchinnikov D; Dumcenco D; Kis A; Cooper D
    ACS Nano; 2020 Jan; 14(1):524-530. PubMed ID: 31820927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of three-dimensional (Si,Ge) nanostructures by off-axis electron holography.
    Zheng CL; Scheerschmidt K; Kirmse H; Häusler I; Neumann W
    Ultramicroscopy; 2013 Jan; 124():108-16. PubMed ID: 23142752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of piezoelectric fields in GaN/ InGaN/GaN strained quantum wells.
    Barnard JS; Cherns D
    J Electron Microsc (Tokyo); 2000; 49(2):281-91. PubMed ID: 11108051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum aberration coefficients for recording high-resolution off-axis holograms in a Cs-corrected TEM.
    Linck M
    Ultramicroscopy; 2013 Jan; 124():77-87. PubMed ID: 23142748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.