These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27554706)

  • 1. The uncertainty in the radon hazard classification of areas as a function of the number of measurements.
    Friedmann H; Baumgartner A; Gruber V; Kaineder H; Maringer FJ; Ringer W; Seidel C
    J Environ Radioact; 2017 Jul; 173():6-10. PubMed ID: 27554706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.
    Friedmann H; Baumgartner A; Bernreiter M; Gräser J; Gruber V; Kabrt F; Kaineder H; Maringer FJ; Ringer W; Seidel C; Wurm G
    J Environ Radioact; 2017 Jan; 166(Pt 2):382-389. PubMed ID: 27158059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.
    Smethurst MA; Watson RJ; Baranwal VC; Rudjord AL; Finne I
    J Environ Radioact; 2017 Jan; 166(Pt 2):321-340. PubMed ID: 27105766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geographical distribution of indoor radon and related geological characteristics in Bonghwa County, a provisional radon-prone area in Korea.
    Lee ER; Chang BU; Kim HJ; Song MH; Kim YJ
    Radiat Prot Dosimetry; 2015 Dec; 167(4):620-5. PubMed ID: 25377749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indoor radon regulation using tabulated values of temporal radon variation.
    Tsapalov A; Kovler K
    J Environ Radioact; 2018 Mar; 183():59-72. PubMed ID: 29306093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology developed to make the Quebec indoor radon potential map.
    Drolet JP; Martel R; Poulin P; Dessau JC
    Sci Total Environ; 2014 Mar; 473-474():372-80. PubMed ID: 24378928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units.
    Kropat G; Bochud F; Jaboyedoff M; Laedermann JP; Murith C; Palacios Gruson M; Baechler S
    J Environ Radioact; 2015 Sep; 147():51-62. PubMed ID: 26042833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radon guidelines miss the mark.
    Pelley J
    Environ Sci Technol; 2007 Feb; 41(3):670-1. PubMed ID: 17328163
    [No Abstract]   [Full Text] [Related]  

  • 9. The use of mapped geology as a predictor of radon potential in Norway.
    Watson RJ; Smethurst MA; Ganerød GV; Finne I; Rudjord AL
    J Environ Radioact; 2017 Jan; 166(Pt 2):341-354. PubMed ID: 27297055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High variability of indoor radon concentrations in uraniferous bedrock areas in the Balkan region.
    Žunić ZS; Ujić P; Nađđerđ L; Yarmoshenko IV; Radanović SB; Komatina Petrović S; Čeliković I; Komatina M; Bossew P
    Appl Radiat Isot; 2014 Dec; 94():328-337. PubMed ID: 25305525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radon-prone areas in the Lombard plain.
    Sesana L; Polla G; Facchini U; De Capitani L
    J Environ Radioact; 2005; 82(1):51-62. PubMed ID: 15829336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor radon measurements in Turkey dwellings.
    Celebi N; Ataksor B; Taskın H; Bingoldag NA
    Radiat Prot Dosimetry; 2015 Dec; 167(4):626-32. PubMed ID: 25389360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geogenic and anthropogenic impacts on indoor radon in the Techa River region.
    Yarmoshenko I; Malinovsky G; Vasilyev A; Onischenko A; Seleznev A
    Sci Total Environ; 2016 Nov; 571():1298-303. PubMed ID: 27474991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geophysical methods in radon risk studies.
    Wysocka M; Kotyrba A; Chalupnik S; Skowronek J
    J Environ Radioact; 2005; 82(3):351-62. PubMed ID: 15885380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variance of indoor radon concentration: Major influencing factors.
    Yarmoshenko I; Vasilyev A; Malinovsky G; Bossew P; Žunić ZS; Onischenko A; Zhukovsky M
    Sci Total Environ; 2016 Jan; 541():155-160. PubMed ID: 26409145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantile regression and Bayesian cluster detection to identify radon prone areas.
    Sarra A; Fontanella L; Valentini P; Palermi S
    J Environ Radioact; 2016 Nov; 164():354-364. PubMed ID: 27567147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to improve the Austrian Radon Potential Map by Bayesian statistics.
    Friedmann H; Gröller J
    J Environ Radioact; 2010 Oct; 101(10):804-8. PubMed ID: 20022149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data.
    Appleton JD; Miles JC; Young M
    Sci Total Environ; 2011 Mar; 409(8):1572-83. PubMed ID: 21310464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a low-level radon reference atmosphere.
    Linzmaier D; Röttger A
    Appl Radiat Isot; 2013 Nov; 81():208-11. PubMed ID: 23562434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France.
    Demoury C; Ielsch G; Hemon D; Laurent O; Laurier D; Clavel J; Guillevic J
    J Environ Radioact; 2013 Dec; 126():216-25. PubMed ID: 24056050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.