These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 27554995)
1. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Vindas Bolaños RA; Cokelaere SM; Estrada McDermott JM; Benders KE; Gbureck U; Plomp SG; Weinans H; Groll J; van Weeren PR; Malda J Osteoarthritis Cartilage; 2017 Mar; 25(3):413-420. PubMed ID: 27554995 [TBL] [Abstract][Full Text] [Related]
2. A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Korthagen NM; Brommer H; Hermsen G; Plomp SGM; Melsom G; Coeleveld K; Mastbergen SC; Weinans H; van Buul W; van Weeren PR Vet J; 2019 Sep; 251():105340. PubMed ID: 31492385 [TBL] [Abstract][Full Text] [Related]
3. Fixation of Hydrogel Constructs for Cartilage Repair in the Equine Model: A Challenging Issue. Mancini IAD; Vindas Bolaños RA; Brommer H; Castilho M; Ribeiro A; van Loon JPAM; Mensinga A; van Rijen MHP; Malda J; van Weeren R Tissue Eng Part C Methods; 2017 Nov; 23(11):804-814. PubMed ID: 28795641 [TBL] [Abstract][Full Text] [Related]
4. Critical-sized cartilage defects in the equine carpus. Salonius E; Rieppo L; Nissi MJ; Pulkkinen HJ; Brommer H; Brünott A; Silvast TS; Van Weeren PR; Muhonen V; Brama PAJ; Kiviranta I Connect Tissue Res; 2019 Mar; 60(2):95-106. PubMed ID: 29560747 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Yang Q; Peng J; Lu SB; Guo QY; Zhao B; Zhang L; Wang AY; Xu WJ; Xia Q; Ma XL; Hu YC; Xu BS Chin Med J (Engl); 2011 Dec; 124(23):3930-8. PubMed ID: 22340321 [TBL] [Abstract][Full Text] [Related]
6. Repair of large osteochondral defects in a beagle model with a novel type I collagen/glycosaminoglycan-porous titanium biphasic scaffold. Duan X; Zhu X; Dong X; Yang J; Huang F; Cen S; Leung F; Fan H; Xiang Z Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3951-7. PubMed ID: 23910301 [TBL] [Abstract][Full Text] [Related]
7. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique]. Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012 [TBL] [Abstract][Full Text] [Related]
8. [Experimental study on loading naringin composite scaffolds for repairing rabbit osteochondral defects]. Huang J; Wang S; Zhang X; Li G; Ji P; Zhao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Apr; 31(4):489-496. PubMed ID: 29798617 [TBL] [Abstract][Full Text] [Related]
9. Repair of cartilage defects with devitalized osteochondral tissue: A pilot animal study. Hiemer B; Genz B; Ostwald J; Jonitz-Heincke A; Wree A; Lindner T; Tischer T; Dommerich S; Bader R J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2354-2364. PubMed ID: 30701676 [TBL] [Abstract][Full Text] [Related]
10. Autologous tissue transplantations for osteochondral repair. Christensen BB Dan Med J; 2016 Apr; 63(4):. PubMed ID: 27034191 [TBL] [Abstract][Full Text] [Related]
11. Addition of Mesenchymal Stem Cells to Autologous Platelet-Enhanced Fibrin Scaffolds in Chondral Defects: Does It Enhance Repair? Goodrich LR; Chen AC; Werpy NM; Williams AA; Kisiday JD; Su AW; Cory E; Morley PS; McIlwraith CW; Sah RL; Chu CR J Bone Joint Surg Am; 2016 Jan; 98(1):23-34. PubMed ID: 26738900 [TBL] [Abstract][Full Text] [Related]
13. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Chang NJ; Lam CF; Lin CC; Chen WL; Li CF; Lin YT; Yeh ML Osteoarthritis Cartilage; 2013 Oct; 21(10):1613-22. PubMed ID: 23927932 [TBL] [Abstract][Full Text] [Related]
14. 3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects. Zhu S; Chen P; Chen Y; Li M; Chen C; Lu H Am J Sports Med; 2020 Sep; 48(11):2808-2818. PubMed ID: 32762553 [TBL] [Abstract][Full Text] [Related]
16. A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Im GI; Ahn JH; Kim SY; Choi BS; Lee SW Tissue Eng Part A; 2010 Apr; 16(4):1189-200. PubMed ID: 19883204 [TBL] [Abstract][Full Text] [Related]
17. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. Wang X; Song X; Li T; Chen J; Cheng G; Yang L; Chen C Am J Sports Med; 2019 Aug; 47(10):2316-2326. PubMed ID: 31233332 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Steele JAM; Moore AC; St-Pierre JP; McCullen SD; Gormley AJ; Horgan CC; Black CR; Meinert C; Klein T; Saifzadeh S; Steck R; Ren J; Woodruff MA; Stevens MM Biomaterials; 2022 Jul; 286():121548. PubMed ID: 35588688 [TBL] [Abstract][Full Text] [Related]
19. Scaffold With Natural Calcified Cartilage Zone for Osteochondral Defect Repair in Minipigs. Huang Y; Fan H; Gong X; Yang L; Wang F Am J Sports Med; 2021 Jun; 49(7):1883-1891. PubMed ID: 33961510 [TBL] [Abstract][Full Text] [Related]
20. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Chen T; Bai J; Tian J; Huang P; Zheng H; Wang J Colloids Surf B Biointerfaces; 2018 Jul; 167():354-363. PubMed ID: 29689491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]