BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27555046)

  • 1. Heat Transfer Analysis of an Optimized, Flexible Holder System for Freeze-Drying in Dual Chamber Cartridges Using Different State-of-the-Art PAT Tools.
    Korpus C; Pikal M; Friess W
    J Pharm Sci; 2016 Nov; 105(11):3304-3313. PubMed ID: 27555046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Different Holder Devices for Freeze-Drying in Dual-Chamber Cartridges With a Focus on Energy Transfer.
    Korpus C; Friess W
    J Pharm Sci; 2017 Apr; 106(4):1092-1101. PubMed ID: 28039019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transfer during freeze-drying in dual-chamber cartridges.
    Korpus C; Haase T; Sönnichsen C; Friess W
    J Pharm Sci; 2015 May; 104(5):1750-8. PubMed ID: 25712903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of the Tunable Diode Laser Absorption Spectroscopy: In-Process Estimation of Primary Drying Heterogeneity and Product Temperature During Lyophilization.
    Sharma P; Kessler WJ; Bogner R; Thakur M; Pikal MJ
    J Pharm Sci; 2019 Jan; 108(1):416-430. PubMed ID: 30114403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-drying in protective bags: Characterization of heat and mass transfer.
    Chamberlain R; Schlauersbach J; Erber M
    Eur J Pharm Biopharm; 2020 Sep; 154():309-316. PubMed ID: 32681964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves.
    Chouvenc P; Vessot S; Andrieu J; Vacus P
    PDA J Pharm Sci Technol; 2005; 59(5):298-309. PubMed ID: 16316065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.
    Vollrath I; Pauli V; Friess W; Freitag A; Hawe A; Winter G
    J Pharm Sci; 2017 May; 106(5):1249-1257. PubMed ID: 28063826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lyophilization Cycle Design for Dual Chamber Cartridges and a Method for Online Process Control: The "DCC LyoMate" Procedure.
    Korpus C; Friess W
    J Pharm Sci; 2017 Aug; 106(8):2077-2087. PubMed ID: 28479354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying.
    Kuu WY; Nail SL; Sacha G
    J Pharm Sci; 2009 Mar; 98(3):1136-54. PubMed ID: 18683861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A procedure to optimize scale-up for the primary drying phase of lyophilization.
    Kramer T; Kremer DM; Pikal MJ; Petre WJ; Shalaev EY; Gatlin LA
    J Pharm Sci; 2009 Jan; 98(1):307-18. PubMed ID: 18506820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T
    J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
    Ganguly A; Nail SL; Alexeenko A
    J Pharm Sci; 2013 May; 102(5):1610-25. PubMed ID: 23580359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P; Varma N; Ganguly A; Pikal M; Alexeenko A; Bogner RH
    AAPS PharmSciTech; 2017 Feb; 18(2):369-380. PubMed ID: 26989063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-drying in novel container system: Characterization of heat and mass transfer in glass syringes.
    Patel SM; Pikal MJ
    J Pharm Sci; 2010 Jul; 99(7):3188-204. PubMed ID: 20166199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization.
    Chen X; Sadineni V; Maity M; Quan Y; Enterline M; Mantri RV
    AAPS PharmSciTech; 2015 Dec; 16(6):1317-26. PubMed ID: 25791415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.