BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27555049)

  • 1. Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases.
    Osberg C; Aksnes H; Ninzima S; Marie M; Arnesen T
    Sci Rep; 2016 Aug; 6():31627. PubMed ID: 27555049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC.
    Van Damme P; Osberg C; Jonckheere V; Glomnes N; Gevaert K; Arnesen T; Aksnes H
    J Biol Chem; 2023 Feb; 299(2):102824. PubMed ID: 36567016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular role of NAA38 in thermostability and catalytic activity of the human NatC N-terminal acetyltransferase.
    Deng S; Gardner SM; Gottlieb L; Pan B; Petersson EJ; Marmorstein R
    Structure; 2023 Feb; 31(2):166-173.e4. PubMed ID: 36638802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p.
    Setty SR; Strochlic TI; Tong AH; Boone C; Burd CG
    Nat Cell Biol; 2004 May; 6(5):414-9. PubMed ID: 15077114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.
    Van Damme P; Støve SI; Glomnes N; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2014 Aug; 13(8):2031-41. PubMed ID: 24408909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30.
    Varland S; Myklebust LM; Goksøyr SØ; Glomnes N; Torsvik J; Varhaug JE; Arnesen T
    Gene; 2018 Feb; 644():27-37. PubMed ID: 29247799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation.
    Van Damme P; Hole K; Pimenta-Marques A; Helsens K; Vandekerckhove J; Martinho RG; Gevaert K; Arnesen T
    PLoS Genet; 2011 Jul; 7(7):e1002169. PubMed ID: 21750686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo.
    Foyn H; Van Damme P; Støve SI; Glomnes N; Evjenth R; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2013 Jan; 12(1):42-54. PubMed ID: 23043182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human NAA30 can rescue yeast mak3∆ mutant growth phenotypes.
    Drazic A; Varland S
    Biosci Rep; 2021 Mar; 41(3):. PubMed ID: 33600573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae.
    Aksnes H; Osberg C; Arnesen T
    PLoS One; 2013; 8(4):e61012. PubMed ID: 23613772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Evolutionarily Conserved
    Ochaya S; Franzén O; Buhwa DA; Foyn H; Butler CE; Stove SI; Tyler KM; Arnesen T; Matovu E; Åslund L; Andersson B
    J Parasitol Res; 2019; 2019():6594212. PubMed ID: 30956813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins.
    Polevoda B; Sherman F
    J Mol Biol; 2003 Jan; 325(4):595-622. PubMed ID: 12507466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p.
    Behnia R; Panic B; Whyte JR; Munro S
    Nat Cell Biol; 2004 May; 6(5):405-13. PubMed ID: 15077113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal Structure of the Golgi-Associated Human Nα-Acetyltransferase 60 Reveals the Molecular Determinants for Substrate-Specific Acetylation.
    Støve SI; Magin RS; Foyn H; Haug BE; Marmorstein R; Arnesen T
    Structure; 2016 Jul; 24(7):1044-56. PubMed ID: 27320834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes.
    Polevoda B; Brown S; Cardillo TS; Rigby S; Sherman F
    J Cell Biochem; 2008 Feb; 103(2):492-508. PubMed ID: 17541948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of N-terminal acetylation by the ternary NatC complex.
    Deng S; Gottlieb L; Pan B; Supplee J; Wei X; Petersson EJ; Marmorstein R
    Structure; 2021 Oct; 29(10):1094-1104.e4. PubMed ID: 34019809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of the human N-terminal acetyltransferase hNaa30 disrupts Golgi integrity and ARFRP1 localization.
    Starheim KK; Kalvik TV; Bjørkøy G; Arnesen T
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28356483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase.
    Chen JY; Liu L; Cao CL; Li MJ; Tan K; Yang X; Yun CH
    Sci Rep; 2016 Aug; 6():31425. PubMed ID: 27550639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An organellar nα-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity.
    Aksnes H; Van Damme P; Goris M; Starheim KK; Marie M; Støve SI; Hoel C; Kalvik TV; Hole K; Glomnes N; Furnes C; Ljostveit S; Ziegler M; Niere M; Gevaert K; Arnesen T
    Cell Rep; 2015 Mar; 10(8):1362-74. PubMed ID: 25732826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.