BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27555770)

  • 1. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.
    Feng P; Peng S; Wu P; Gao C; Huang W; Deng Y; Xiao T; Shuai C
    Int J Nanomedicine; 2016; 11():3487-500. PubMed ID: 27555770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds.
    Peng S; Feng P; Wu P; Huang W; Yang Y; Guo W; Gao C; Shuai C
    Sci Rep; 2017 Apr; 7():46604. PubMed ID: 28425470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds.
    Conrad TL; Jaekel DJ; Kurtz SM; Roeder RK
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):576-83. PubMed ID: 23296754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H
    J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.
    Liu T; Wu P; Gao C; Feng P; Xiao T; Deng Y; Shuai C; Peng S
    Biomed Res Int; 2016; 2016():7090635. PubMed ID: 27144173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Biological Analysis of Highly Porous PEEK Bionanocomposites Incorporated with Carbon and Hydroxyapatite Nanoparticles for Biological Applications.
    Swaminathan PD; Uddin MN; Wooley P; Asmatulu R
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32781588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.
    Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEEK and Hyaluronan-Based 3D Printed Structures: Promising Combination to Improve Bone Regeneration.
    Ferroni L; D'Amora U; Leo S; Tremoli E; Raucci MG; Ronca A; Ambrosio L; Zavan B
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering.
    Dalgic AD; Alshemary AZ; Tezcaner A; Keskin D; Evis Z
    J Biomater Appl; 2018 May; 32(10):1392-1405. PubMed ID: 29544381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials.
    Oyefusi A; Olanipekun O; Neelgund GM; Peterson D; Stone JM; Williams E; Carson L; Regisford G; Oki A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():410-6. PubMed ID: 24892524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of in situ and physical mixing on mechanical and bioactive behaviors of nano hydroxyapatite-chitosan scaffolds.
    Chen J; Zhang G; Yang S; Li J; Jia H; Fang Z; Zhang Q
    J Biomater Sci Polym Ed; 2011; 22(15):2097-106. PubMed ID: 21067654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin.
    Yao MZ; Huang-Fu MY; Liu HN; Wang XR; Sheng X; Gao JQ
    Int J Nanomedicine; 2016; 11():6181-6194. PubMed ID: 27920525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical and osteointegration study of 3D-printed porous PEEK hydroxyapatite-coated scaffolds.
    Wu C; Zeng B; Shen D; Deng J; Zhong L; Hu H; Wang X; Li H; Xu L; Deng Y
    J Biomater Sci Polym Ed; 2023 Mar; 34(4):435-448. PubMed ID: 36106718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.
    Luo Y; Lode A; Wu C; Chang J; Gelinsky M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold.
    Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering.
    Chen JD; Wang Y; Chen X
    J Biomater Sci Polym Ed; 2009; 20(11):1555-65. PubMed ID: 19619396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.