These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27555857)

  • 1. A Snapshot of Functional Genetic Studies in Medicago truncatula.
    Kang Y; Li M; Sinharoy S; Verdier J
    Front Plant Sci; 2016; 7():1175. PubMed ID: 27555857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerant mechanism of model legume plant
    Zhang X; Sun Y; Qiu X; Lu H; Hwang I; Wang T
    Front Plant Sci; 2022; 13():847166. PubMed ID: 36160994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Medicago truncatula Genome: Genomic Data Availability.
    Burks D; Azad R; Wen J; Dickstein R
    Methods Mol Biol; 2018; 1822():39-59. PubMed ID: 30043295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Medicago truncatula Genomics.
    Ané JM; Zhu H; Frugoli J
    Int J Plant Genomics; 2008; 2008():256597. PubMed ID: 18288239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula.
    Elmaghrabi AM; Rogers HJ; Francis D; Ochatt S
    Methods Mol Biol; 2018; 1822():291-314. PubMed ID: 30043311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa.
    Gou J; Debnath S; Sun L; Flanagan A; Tang Y; Jiang Q; Wen J; Wang ZY
    Plant Biotechnol J; 2018 Apr; 16(4):951-962. PubMed ID: 28941083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future.
    Rose RJ
    Funct Plant Biol; 2008 Jun; 35(4):253-264. PubMed ID: 32688781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria.
    Revalska M; Vassileva V; Goormachtig S; Van Hautegem T; Ratet P; Iantcheva A
    Curr Genomics; 2011 Apr; 12(2):147-52. PubMed ID: 21966253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical Mutagenesis in Medicago truncatula Using Fast Neutron Bombardment (FNB) for Symbiosis and Developmental Biology Studies.
    Chen Y; Chen R
    Methods Mol Biol; 2018; 1822():61-69. PubMed ID: 30043296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes.
    Thoquet P; Ghérardi M; Journet EP; Kereszt A; Ané JM; Prosperi JM; Huguet T
    BMC Plant Biol; 2002; 2():1. PubMed ID: 11825338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model Legumes: Functional Genomics Tools in Medicago truncatula.
    Cañas LA; Beltrán JP
    Methods Mol Biol; 2018; 1822():11-37. PubMed ID: 30043294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translating Medicago truncatula genomics to crop legumes.
    Young ND; Udvardi M
    Curr Opin Plant Biol; 2009 Apr; 12(2):193-201. PubMed ID: 19162532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of Medicago truncatula.
    Sun Y; Wu Z; Wang Y; Yang J; Wei G; Chou M
    Plant Cell Physiol; 2019 Apr; 60(4):900-915. PubMed ID: 30649463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview.
    Liu C; Ha CM; Dixon RA
    Methods Mol Biol; 2018; 1822():315-337. PubMed ID: 30043312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Legume Resources: MtDB and Medicago.Org.
    Retzel EF; Johnson JE; Crow JA; Lamblin AF; Paule CE
    Methods Mol Biol; 2007; 406():261-74. PubMed ID: 18287697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MTGD: The Medicago truncatula genome database.
    Krishnakumar V; Kim M; Rosen BD; Karamycheva S; Bidwell SL; Tang H; Town CD
    Plant Cell Physiol; 2015 Jan; 56(1):e1. PubMed ID: 25432968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LegumeDB1 bioinformatics resource: comparative genomic analysis and novel cross-genera marker identification in lupin and pasture legume species.
    Moolhuijzen P; Cakir M; Hunter A; Schibeci D; Macgregor A; Smith C; Francki M; Jones MG; Appels R; Bellgard M
    Genome; 2006 Jun; 49(6):689-99. PubMed ID: 16936848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inoculation with Efficient Nitrogen Fixing and Indoleacetic Acid Producing Bacterial Microsymbiont Enhance Tolerance of the Model Legume
    Kallala N; M'sehli W; Jelali K; Kais Z; Mhadhbi H
    Biomed Res Int; 2018; 2018():9134716. PubMed ID: 30406145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.