These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27555857)

  • 21. Functional Genomics and Seed Development in Medicago truncatula: An Overview.
    Le Signor C; Vernoud V; Noguero M; Gallardo K; Thompson RD
    Methods Mol Biol; 2018; 1822():175-195. PubMed ID: 30043305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.
    de Zélicourt A; Diet A; Marion J; Laffont C; Ariel F; Moison M; Zahaf O; Crespi M; Gruber V; Frugier F
    Plant J; 2012 Apr; 70(2):220-30. PubMed ID: 22098255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects.
    Liu Y; Li J; Zhu Y; Jones A; Rose RJ; Song Y
    Front Plant Sci; 2019; 10():938. PubMed ID: 31417579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N-stressed plants when symbiotic N2 fixation is the main N source for plant growth.
    Moreau D; Voisin AS; Salon C; Munier-Jolain N
    J Exp Bot; 2008; 59(13):3509-22. PubMed ID: 18703494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing.
    Veerappan V; Jani M; Kadel K; Troiani T; Gale R; Mayes T; Shulaev E; Wen J; Mysore KS; Azad RK; Dickstein R
    BMC Genomics; 2016 Feb; 17():141. PubMed ID: 26920390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.
    Friesen ML; von Wettberg EJ; Badri M; Moriuchi KS; Barhoumi F; Chang PL; Cuellar-Ortiz S; Cordeiro MA; Vu WT; Arraouadi S; Djébali N; Zribi K; Badri Y; Porter SS; Aouani ME; Cook DR; Strauss SY; Nuzhdin SV
    BMC Genomics; 2014 Dec; 15(1):1160. PubMed ID: 25534372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in Medicago truncatula.
    Boivin S; Kazmierczak T; Brault M; Wen J; Gamas P; Mysore KS; Frugier F
    Plant Cell Environ; 2016 Oct; 39(10):2198-209. PubMed ID: 27341695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa.
    Hrbáčková M; Dvořák P; Takáč T; Tichá M; Luptovčiak I; Šamajová O; Ovečka M; Šamaj J
    Front Plant Sci; 2020; 11():592. PubMed ID: 32508859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.
    Veereshlingam H; Haynes JG; Penmetsa RV; Cook DR; Sherrier DJ; Dickstein R
    Plant Physiol; 2004 Nov; 136(3):3692-702. PubMed ID: 15516506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis.
    Mitra RM; Long SR
    Plant Physiol; 2004 Feb; 134(2):595-604. PubMed ID: 14739349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-genome landscape of Medicago truncatula symbiotic genes.
    Pecrix Y; Staton SE; Sallet E; Lelandais-Brière C; Moreau S; Carrère S; Blein T; Jardinaud MF; Latrasse D; Zouine M; Zahm M; Kreplak J; Mayjonade B; Satgé C; Perez M; Cauet S; Marande W; Chantry-Darmon C; Lopez-Roques C; Bouchez O; Bérard A; Debellé F; Muños S; Bendahmane A; Bergès H; Niebel A; Buitink J; Frugier F; Benhamed M; Crespi M; Gouzy J; Gamas P
    Nat Plants; 2018 Dec; 4(12):1017-1025. PubMed ID: 30397259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medicago truncatula proteomics.
    Colditz F; Braun HP
    J Proteomics; 2010 Sep; 73(10):1974-85. PubMed ID: 20621211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules.
    Lang C; Long SR
    Mol Plant Microbe Interact; 2015 Aug; 28(8):856-68. PubMed ID: 25844838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Medicago truncatula: Genetic and Genomic Resources.
    Garmier M; Gentzbittel L; Wen J; Mysore KS; Ratet P
    Curr Protoc Plant Biol; 2017 Dec; 2(4):318-349. PubMed ID: 33383982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.
    Horváth B; Domonkos Á; Kereszt A; Szűcs A; Ábrahám E; Ayaydin F; Bóka K; Chen Y; Chen R; Murray JD; Udvardi MK; Kondorosi É; Kaló P
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15232-7. PubMed ID: 26401023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Genomics and Genetic Control of Flower and Fruit Development in Medicago truncatula: An Overview.
    Roque E; Gómez-Mena C; Ferrándiz C; Beltrán JP; Cañas LA
    Methods Mol Biol; 2018; 1822():273-290. PubMed ID: 30043310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula.
    Weidmann S; Sanchez L; Descombin J; Chatagnier O; Gianinazzi S; Gianinazzi-Pearson V
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1385-93. PubMed ID: 15597744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression.
    Starker CG; Parra-Colmenares AL; Smith L; Mitra RM; Long SR
    Plant Physiol; 2006 Feb; 140(2):671-80. PubMed ID: 16407449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A seed change in our understanding of legume biology from genomics to the efficient cooperation between nodulation and arbuscular mycorrhizal fungi.
    Foyer CH; Nguyen HT; Lam HM
    Plant Cell Environ; 2018 Sep; 41(9):1949-1954. PubMed ID: 30520104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors.
    Rightmyer AP; Long SR
    Mol Plant Microbe Interact; 2011 Nov; 24(11):1372-84. PubMed ID: 21809981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.