BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27555865)

  • 1. A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice.
    Jacquin L; Cao TV; Ahmadi N
    Front Genet; 2016; 7():145. PubMed ID: 27555865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
    Cuevas J; Crossa J; Soberanis V; Pérez-Elizalde S; Pérez-Rodríguez P; Campos GL; Montesinos-López OA; Burgueño J
    Plant Genome; 2016 Nov; 9(3):. PubMed ID: 27902799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Epistasis in Genomic Selection.
    Jiang Y; Reif JC
    Genetics; 2015 Oct; 201(2):759-68. PubMed ID: 26219298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures.
    Howard R; Carriquiry AL; Beavis WD
    G3 (Bethesda); 2014 Apr; 4(6):1027-46. PubMed ID: 24727289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of statistical methods for genomic selection in a mice population.
    Neves HH; Carvalheiro R; Queiroz SA
    BMC Genet; 2012 Nov; 13():100. PubMed ID: 23134637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Models and Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat.
    Juliana P; Singh RP; Singh PK; Crossa J; Rutkoski JE; Poland JA; Bergstrom GC; Sorrells ME
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-enabled methods for predicting litter size in pigs: a comparison.
    Tusell L; Pérez-Rodríguez P; Forni S; Wu XL; Gianola D
    Animal; 2013 Nov; 7(11):1739-49. PubMed ID: 23880322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.).
    Onogi A; Ideta O; Inoshita Y; Ebana K; Yoshioka T; Yamasaki M; Iwata H
    Theor Appl Genet; 2015 Jan; 128(1):41-53. PubMed ID: 25341369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Quasi) multitask support vector regression with heuristic hyperparameter optimization for whole-genome prediction of complex traits: a case study with carcass traits in broilers.
    Alves AAC; Fernandes AFA; Lopes FB; Breen V; Hawken R; Gianola D; Rosa GJM
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37216670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Prediction of Complex Traits in Two Outcrossing Plant Species Through Deep Learning and Bayesian Regularized Neural Network.
    Maldonado C; Mora-Poblete F; Contreras-Soto RI; Ahmar S; Chen JT; do Amaral Júnior AT; Scapim CA
    Front Plant Sci; 2020; 11():593897. PubMed ID: 33329658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response to Early Generation Genomic Selection for Yield in Wheat.
    Bonnett D; Li Y; Crossa J; Dreisigacker S; Basnet B; Pérez-Rodríguez P; Alvarado G; Jannink JL; Poland J; Sorrells M
    Front Plant Sci; 2021; 12():718611. PubMed ID: 35087542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive ability of genome-assisted statistical models under various forms of gene action.
    Momen M; Mehrgardi AA; Sheikhi A; Kranis A; Tusell L; Morota G; Rosa GJM; Gianola D
    Sci Rep; 2018 Aug; 8(1):12309. PubMed ID: 30120288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lost in Translation: On the Problem of Data Coding in Penalized Whole Genome Regression with Interactions.
    Martini JWR; Rosales F; Ha NT; Heise J; Wimmer V; Kneib T
    G3 (Bethesda); 2019 Apr; 9(4):1117-1129. PubMed ID: 30760541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive assessment of single-step BLUP with linear and non-linear similarity RKHS kernels: A case study in chickens.
    Momen M; Kranis A; Rosa GJM; Muir P; Gianola D
    J Anim Breed Genet; 2022 May; 139(3):247-258. PubMed ID: 34931377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.
    Pérez-Rodríguez P; Gianola D; González-Camacho JM; Crossa J; Manès Y; Dreisigacker S
    G3 (Bethesda); 2012 Dec; 2(12):1595-605. PubMed ID: 23275882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Growth Traits with Genomic Selection Methods in Zhikong Scallop (Chlamys farreri).
    Wang Y; Sun G; Zeng Q; Chen Z; Hu X; Li H; Wang S; Bao Z
    Mar Biotechnol (NY); 2018 Dec; 20(6):769-779. PubMed ID: 30116982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency.
    An B; Liang M; Chang T; Duan X; Du L; Xu L; Zhang L; Gao X; Li J; Gao H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic dissection of additive and non-additive genetic effects and genomic prediction in an open-pollinated family test of Japanese larch.
    Dong L; Xie Y; Zhang Y; Wang R; Sun X
    BMC Genomics; 2024 Jan; 25(1):11. PubMed ID: 38166605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-enabled prediction of genetic values using radial basis function neural networks.
    González-Camacho JM; de Los Campos G; Pérez P; Gianola D; Cairns JE; Mahuku G; Babu R; Crossa J
    Theor Appl Genet; 2012 Aug; 125(4):759-71. PubMed ID: 22566067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.