These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 27556154)
21. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929 [TBL] [Abstract][Full Text] [Related]
22. Saving robots improves laparoscopic performance: transfer of skills from a serious game to a virtual reality simulator. IJgosse WM; van Goor H; Luursema JM Surg Endosc; 2018 Jul; 32(7):3192-3199. PubMed ID: 29349543 [TBL] [Abstract][Full Text] [Related]
23. Assessing the effectiveness of serious game training designed to assist in upper limb prothesis rehabilitation. Maas B; Van Der Sluis CK; Bongers RM Front Rehabil Sci; 2024; 5():1353077. PubMed ID: 38348457 [TBL] [Abstract][Full Text] [Related]
24. Video Game Play Does Not Improve Spatial Skills When Controlling for Speed-Accuracy Trade-Off: Evidence From Mental-Rotation and Mental-Folding Tasks. Safaei A; Rahmanian M; Oraki M; Zinchenko A Percept Mot Skills; 2022 Jun; 129(3):488-512. PubMed ID: 35395926 [TBL] [Abstract][Full Text] [Related]
25. Effect of feedback during virtual training of grip force control with a myoelectric prosthesis. Bouwsema H; van der Sluis CK; Bongers RM PLoS One; 2014; 9(5):e98301. PubMed ID: 24865570 [TBL] [Abstract][Full Text] [Related]
26. Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task. Lohse KR; Boyd LA; Hodges NJ J Mot Behav; 2016; 48(2):172-82. PubMed ID: 26296097 [TBL] [Abstract][Full Text] [Related]
27. The Interaction Between Feedback Type and Learning in Routine Grasping With Myoelectric Prostheses. Wilke MA; Hartmann C; Schimpf F; Farina D; Dosen S IEEE Trans Haptics; 2020; 13(3):645-654. PubMed ID: 31870991 [TBL] [Abstract][Full Text] [Related]
28. Intermanual transfer effect in young children after training in a complex skill: mechanistic, pseudorandomized, pretest-posttest study. Romkema S; Bongers RM; van der Sluis CK Phys Ther; 2015 May; 95(5):730-9. PubMed ID: 25504483 [TBL] [Abstract][Full Text] [Related]
29. Upper limb muscle activation during sports video gaming of persons with spinal cord injury. Jaramillo JP; Johanson ME; Kiratli BJ J Spinal Cord Med; 2019 Jan; 42(1):77-85. PubMed ID: 29616887 [TBL] [Abstract][Full Text] [Related]
30. Quantitative Eye Gaze and Movement Differences in Visuomotor Adaptations to Varying Task Demands Among Upper-Extremity Prosthesis Users. Hebert JS; Boser QA; Valevicius AM; Tanikawa H; Lavoie EB; Vette AH; Pilarski PM; Chapman CS JAMA Netw Open; 2019 Sep; 2(9):e1911197. PubMed ID: 31517965 [TBL] [Abstract][Full Text] [Related]
31. Comparing online wrist and forearm EMG-based control using a rhythm game-inspired evaluation environment. Meredith R; Eddy E; Bateman S; Scheme E J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39079541 [No Abstract] [Full Text] [Related]
32. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone. de Paula JN; de Mello Monteiro CB; da Silva TD; Capelini CM; de Menezes LDC; Massetti T; Tonks J; Watson S; Nicolai Ré AH Disabil Rehabil Assist Technol; 2018 Aug; 13(6):609-613. PubMed ID: 29092683 [TBL] [Abstract][Full Text] [Related]
33. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Raveh E; Friedman J; Portnoy S Assist Technol; 2018; 30(5):274-280. PubMed ID: 28628379 [TBL] [Abstract][Full Text] [Related]
34. Transfer of motor skill between virtual reality viewed using a head-mounted display and conventional screen environments. Juliano JM; Liew SL J Neuroeng Rehabil; 2020 Apr; 17(1):48. PubMed ID: 32276664 [TBL] [Abstract][Full Text] [Related]
35. Video gaming improves robotic surgery simulator success: a multi-clinic study on robotic skills. Kılınçarslan Ö; Türk Y; Vargör A; Özdemir M; Hassoy H; Makay Ö J Robot Surg; 2023 Aug; 17(4):1435-1442. PubMed ID: 36754922 [TBL] [Abstract][Full Text] [Related]
36. The Anatomy of Action Systems: Task Differentiation When Learning an EMG Controlled Game. van Dijk L; Heerschop A; van der Sluis CK; Bongers RM Front Psychol; 2016; 7():1945. PubMed ID: 28018278 [TBL] [Abstract][Full Text] [Related]
37. Video Game-Based Rehabilitation Approach for Individuals Who Have Undergone Upper Limb Amputation: Case-Control Study. Hashim NA; Abd Razak NA; Gholizadeh H; Abu Osman NA JMIR Serious Games; 2021 Feb; 9(1):e17017. PubMed ID: 33538698 [TBL] [Abstract][Full Text] [Related]
38. Motor Learning: An Analysis of 100 Trials of a Ski Slalom Game in Children with and without Developmental Coordination Disorder. Smits-Engelsman BC; Jelsma LD; Ferguson GD; Geuze RH PLoS One; 2015; 10(10):e0140470. PubMed ID: 26466324 [TBL] [Abstract][Full Text] [Related]
39. Improved nondominant hand performance on a laparoscopic virtual reality simulator after playing the Nintendo Wii. Middleton KK; Hamilton T; Tsai PC; Middleton DB; Falcone JL; Hamad G Surg Endosc; 2013 Nov; 27(11):4224-31. PubMed ID: 23760943 [TBL] [Abstract][Full Text] [Related]
40. Learning to use a body-powered prosthesis: changes in functionality and kinematics. Huinink LH; Bouwsema H; Plettenburg DH; van der Sluis CK; Bongers RM J Neuroeng Rehabil; 2016 Oct; 13(1):90. PubMed ID: 27716254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]