BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27556365)

  • 1. Human Envelope Following Responses to Amplitude Modulation: Effects of Aging and Modulation Depth.
    Dimitrijevic A; Alsamri J; John MS; Purcell D; George S; Zeng FG
    Ear Hear; 2016; 37(5):e322-35. PubMed ID: 27556365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Age-Related Declines in Subcortical Auditory Processing in Speech Perception in Noise.
    Schoof T; Rosen S
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):441-60. PubMed ID: 27216166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison.
    Johnson TA; Brown CJ
    Ear Hear; 2005 Dec; 26(6):559-76. PubMed ID: 16377993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in envelope-following responses at equalized peripheral or central activation.
    Lai J; Sommer AL; Bartlett EL
    Neurobiol Aging; 2017 Oct; 58():191-200. PubMed ID: 28753474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in the relationship between auditory brainstem responses and envelope-following responses.
    Parthasarathy A; Datta J; Torres JA; Hopkins C; Bartlett EL
    J Assoc Res Otolaryngol; 2014 Aug; 15(4):649-61. PubMed ID: 24845405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.
    Paul BT; Bruce IC; Roberts LE
    Hear Res; 2017 Feb; 344():170-182. PubMed ID: 27888040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Masking Differentially Affects Envelope-following Responses in Young and Aged Animals.
    Lai J; Bartlett EL
    Neuroscience; 2018 Aug; 386():150-165. PubMed ID: 29953908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Relationship between Psychoacoustic and Electrophysiological Assessments of Temporal Resolution.
    Heydari K; Tahaei AA; Pourbakht A; Haghani H; Nazeri A
    J Am Acad Audiol; 2021 Mar; 32(3):171-179. PubMed ID: 33873218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of auditory steady state response and behavioral air conduction and bone conduction thresholds for infants and adults with normal hearing.
    Casey KA; Small SA
    Ear Hear; 2014; 35(4):423-39. PubMed ID: 24569693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-Retest Variability in the Characteristics of Envelope Following Responses Evoked by Speech Stimuli.
    Easwar V; Scollie S; Aiken S; Purcell D
    Ear Hear; 2020; 41(1):150-164. PubMed ID: 31136317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in the auditory brainstem response.
    Konrad-Martin D; Dille MF; McMillan G; Griest S; McDermott D; Fausti SA; Austin DF
    J Am Acad Audiol; 2012 Jan; 23(1):18-35; quiz 74-5. PubMed ID: 22284838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory function in normal-hearing, noise-exposed human ears.
    Stamper GC; Johnson TA
    Ear Hear; 2015; 36(2):172-84. PubMed ID: 25350405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human auditory steady-state responses during sweeps of intensity.
    Picton TW; van Roon P; John MS
    Ear Hear; 2007 Aug; 28(4):542-57. PubMed ID: 17609615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability in Hearing Threshold Prediction in Normal-Hearing and Hearing-Impaired Participants Using Mixed Multiple ASSR.
    Israelsson KE; Bogo R; Berninger E
    J Am Acad Audiol; 2015 Mar; 26(3):299-310. PubMed ID: 25751697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing normal hearing with the dichotic multiple-frequency auditory steady-state response compared to an auditory brainstem response protocol.
    Swanepoel D; Schmulian D; Hugo R
    Acta Otolaryngol; 2004 Jan; 124(1):62-8. PubMed ID: 14977080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Stimulus Level and Bandwidth on Speech-Evoked Envelope Following Responses in Adults With Normal Hearing.
    Easwar V; Purcell DW; Aiken SJ; Parsa V; Scollie SD
    Ear Hear; 2015; 36(6):619-34. PubMed ID: 26226607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of envelope following responses to vowel polarity.
    Easwar V; Beamish L; Aiken S; Choi JM; Scollie S; Purcell D
    Hear Res; 2015 Feb; 320():38-50. PubMed ID: 25500177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorineural Hearing Loss Diminishes Use of Temporal Envelope Cues: Evidence From Roving-Level Tone-in-Noise Detection.
    Leong UC; Schwarz DM; Henry KS; Carney LH
    Ear Hear; 2020; 41(4):1009-1019. PubMed ID: 31985535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Envelope following responses predict speech-in-noise performance in normal-hearing listeners.
    Mepani AM; Verhulst S; Hancock KE; Garrett M; Vasilkov V; Bennett K; de Gruttola V; Liberman MC; Maison SF
    J Neurophysiol; 2021 Apr; 125(4):1213-1222. PubMed ID: 33656936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.