BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27556416)

  • 1. A matrix rank based concordance index for evaluating and detecting conditional specific co-expressed gene modules.
    Han Z; Zhang J; Sun G; Liu G; Huang K
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):519. PubMed ID: 27556416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized gene co-expression analysis via subspace clustering using low-rank representation.
    Wang T; Zhang J; Huang K
    BMC Bioinformatics; 2019 May; 20(Suppl 7):196. PubMed ID: 31074376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer.
    Xu Y; Duanmu H; Chang Z; Zhang S; Li Z; Li Z; Liu Y; Li K; Qiu F; Li X
    Mol Biol Rep; 2012 Feb; 39(2):1627-37. PubMed ID: 21611746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression.
    Shi Z; Derow CK; Zhang B
    BMC Syst Biol; 2010 May; 4():74. PubMed ID: 20507583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene coexpression analysis offers important modules and pathway of human lung adenocarcinomas.
    Wei Z; Zhongqiu T; Lu S; Zhang F; Xie W; Wang Y
    J Cell Physiol; 2020 Jan; 235(1):454-464. PubMed ID: 31264215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays.
    Huang C; Sheng Y; Jia J; Chen L
    J Cancer Res Ther; 2014 Nov; 10 Suppl():C114-24. PubMed ID: 25450268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression analysis reveals key gene modules and pathways of oral squamous cell carcinoma.
    Li X; Hu WW; Wang L; Yang XH
    Cancer Biomark; 2018; 22(4):763-771. PubMed ID: 29914011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parsimonious Gene Correlation Network Analysis (PGCNA): a tool to define modular gene co-expression for refined molecular stratification in cancer.
    Care MA; Westhead DR; Tooze RM
    NPJ Syst Biol Appl; 2019; 5():13. PubMed ID: 30993001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer.
    Xu M; Kao MC; Nunez-Iglesias J; Nevins JR; West M; Zhou XJ
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S12. PubMed ID: 18366601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of differential protein-coding gene expressions in early phase lung adenocarcinoma.
    Zhou LN; Li SC; Li XY; Ge H; Li HM
    Thorac Cancer; 2018 Feb; 9(2):234-240. PubMed ID: 29266838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prediction of local modular structures in a co-expression network based on gene expression datasets.
    Ogata Y; Sakurai N; Suzuki H; Aoki K; Saito K; Shibata D
    Genome Inform; 2009 Oct; 23(1):117-27. PubMed ID: 20180267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Module network inference from a cancer gene expression data set identifies microRNA regulated modules.
    Bonnet E; Tatari M; Joshi A; Michoel T; Marchal K; Berx G; Van de Peer Y
    PLoS One; 2010 Apr; 5(4):e10162. PubMed ID: 20418949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis.
    Long T; Liu Z; Zhou X; Yu S; Tian H; Bao Y
    Mol Med Rep; 2019 Mar; 19(3):2029-2040. PubMed ID: 30664219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mislocalization-related disease gene discovery using gene expression based computational protein localization prediction.
    Liu Z; Hu J
    Methods; 2016 Jan; 93():119-27. PubMed ID: 26416496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
    Zhou Y; Liu Y; Li K; Zhang R; Qiu F; Zhao N; Xu Y
    PLoS One; 2015; 10(3):e0116095. PubMed ID: 25803614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic.
    Hasankhani A; Bahrami A; Sheybani N; Aria B; Hemati B; Fatehi F; Ghaem Maghami Farahani H; Javanmard G; Rezaee M; Kastelic JP; Barkema HW
    Front Immunol; 2021; 12():789317. PubMed ID: 34975885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and pathway enrichment analysis for integrated regulatory network of high- and low-metastatic lung cancer.
    Chen QY; Jiao DM; Wu YQ; Wang L; Hu HZ; Song J; Yan J; Wu LJ
    Mol Biosyst; 2013 Dec; 9(12):3080-90. PubMed ID: 24077187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.