These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 27556418)

  • 1. Reconstructing directed gene regulatory network by only gene expression data.
    Zhang L; Feng XK; Ng YK; Li SC
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):430. PubMed ID: 27556418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of SNP-gene regulatory networks by integrating gene expressions and genetic perturbations.
    Kim DC; Wang J; Liu C; Gao J
    Biomed Res Int; 2014; 2014():629697. PubMed ID: 25136606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
    Kulp DC; Jagalur M
    BMC Genomics; 2006 May; 7():125. PubMed ID: 16719927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring gene regulatory networks by thermodynamic modeling.
    Chen CC; Zhong S
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S19. PubMed ID: 18831784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimming of mammalian transcriptional networks using network component analysis.
    Tran LM; Hyduke DR; Liao JC
    BMC Bioinformatics; 2010 Oct; 11():511. PubMed ID: 20942926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An information theoretic method for reconstructing local regulatory network modules from polymorphic samples.
    Jagalur M; Kulp D
    Comput Syst Bioinformatics Conf; 2007; 6():133-43. PubMed ID: 17951819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing the Molecular Function of Genetic Variation in Regulatory Networks.
    Wilentzik R; Ye CJ; Gat-Viks I
    Genetics; 2017 Dec; 207(4):1699-1709. PubMed ID: 29046401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-Based Analysis of eQTL Data to Prioritize Driver Mutations.
    De Maeyer D; Weytjens B; De Raedt L; Marchal K
    Genome Biol Evol; 2016 Jan; 8(3):481-94. PubMed ID: 26802430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting gene regulatory networks by combining spatial and temporal gene expression data in
    de Luis Balaguer MA; Fisher AP; Clark NM; Fernandez-Espinosa MG; Möller BK; Weijers D; Lohmann JU; Williams C; Lorenzo O; Sozzani R
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7632-E7640. PubMed ID: 28827319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans.
    Codoni V; Blum Y; Civelek M; Proust C; Franzén O; ; ; Björkegren JL; Le Goff W; Cambien F; Lusis AJ; Trégouët DA
    G3 (Bethesda); 2016 Oct; 6(10):3361-3371. PubMed ID: 27558669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EpiTracer - an algorithm for identifying epicenters in condition-specific biological networks.
    Sambaturu N; Mishra M; Chandra N
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):543. PubMed ID: 27556637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condition-specific gene co-expression network mining identifies key pathways and regulators in the brain tissue of Alzheimer's disease patients.
    Xiang S; Huang Z; Wang T; Han Z; Yu CY; Ni D; Huang K; Zhang J
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):115. PubMed ID: 30598117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of statistically significant network changes in complex biological networks.
    Mall R; Cerulo L; Bensmail H; Iavarone A; Ceccarelli M
    BMC Syst Biol; 2017 Mar; 11(1):32. PubMed ID: 28259158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.