BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27556423)

  • 1. Direct Evidence for Metabolon Formation and Substrate Channeling in Recombinant TCA Cycle Enzymes.
    Bulutoglu B; Garcia KE; Wu F; Minteer SD; Banta S
    ACS Chem Biol; 2016 Oct; 11(10):2847-2853. PubMed ID: 27556423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling.
    Huang YM; Huber GA; Wang N; Minteer SD; McCammon JA
    Protein Sci; 2018 Feb; 27(2):463-471. PubMed ID: 29094409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon.
    Vélot C; Mixon MB; Teige M; Srere PA
    Biochemistry; 1997 Nov; 36(47):14271-6. PubMed ID: 9400365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase.
    Shatalin K; Lebreton S; Rault-Leonardon M; Vélot C; Srere PA
    Biochemistry; 1999 Jan; 38(3):881-9. PubMed ID: 9893982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase.
    Elcock AH; McCammon JA
    Biochemistry; 1996 Oct; 35(39):12652-8. PubMed ID: 8841108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of the malate dehydrogenase-citrate synthase metabolon is modulated by intermediates of the Krebs tricarboxylic acid cycle.
    Omini J; Wojciechowska I; Skirycz A; Moriyama H; Obata T
    Sci Rep; 2021 Sep; 11(1):18770. PubMed ID: 34548590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence characterization of co-immobilization-induced multi-enzyme aggregation in a polymer matrix using Förster resonance energy transfer (FRET): toward the metabolon biomimic.
    Wu F; Minteer SD
    Biomacromolecules; 2013 Aug; 14(8):2739-49. PubMed ID: 23848576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a multienzyme complex of the tricarboxylic acid cycle enzymes containing citrate synthase isoenzymes from Pseudomonas aeruginosa.
    Mitchell CG
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):769-74. PubMed ID: 8611153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulatory role of Streptomyces coelicolor TamR in central metabolism.
    Huang H; Sivapragasam S; Grove A
    Biochem J; 2015 Mar; 466(2):347-58. PubMed ID: 25494937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical assays for mitochondrial activity: assays of TCA cycle enzymes and PDHc.
    Reisch AS; Elpeleg O
    Methods Cell Biol; 2007; 80():199-222. PubMed ID: 17445696
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate.
    Morgunov I; Srere PA
    J Biol Chem; 1998 Nov; 273(45):29540-4. PubMed ID: 9792662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic simulations of competition between substrates binding to an enzyme.
    Elcock AH
    Biophys J; 2002 May; 82(5):2326-32. PubMed ID: 11964223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.
    Wu F; Minteer S
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1851-4. PubMed ID: 25537779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of citric acid cycle enzymes into a multienzyme cluster.
    Barnes SJ; Weitzman PD
    FEBS Lett; 1986 Jun; 201(2):267-70. PubMed ID: 3086126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment.
    Elcock AH; Huber GA; McCammon JA
    Biochemistry; 1997 Dec; 36(51):16049-58. PubMed ID: 9405038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light.
    Fedorin DN; Eprintsev AT; Igamberdiev AU
    J Plant Physiol; 2024 Mar; 294():154195. PubMed ID: 38377939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic effects of mislocalized mitochondrial and peroxisomal citrate synthases in yeast Saccharomyces cerevisiae.
    Vélot C; Lebreton S; Morgunov I; Usher KC; Srere PA
    Biochemistry; 1999 Dec; 38(49):16195-204. PubMed ID: 10587442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria.
    Robinson JB; Srere PA
    J Biol Chem; 1985 Sep; 260(19):10800-5. PubMed ID: 4030772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tricarboxylic acid cycle in L₃ Teladorsagia circumcincta: metabolism of acetyl CoA to succinyl CoA.
    Simcock DC; Walker LR; Pedley KC; Simpson HV; Brown S
    Exp Parasitol; 2011 May; 128(1):68-75. PubMed ID: 21320492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of asparagusate and lipoate on enzymes of the tricarboxylic acid cycle and related metabolic pathways.
    Yanagawa H; Egami F
    J Biochem; 1975 Dec; 78(6):1153-60. PubMed ID: 773925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.