BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 27556733)

  • 1. Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations.
    Lu C; Stock G; Knecht V
    Proteins; 2016 Nov; 84(11):1690-1705. PubMed ID: 27556733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allostery is an intrinsic property of the protease domain of DegS: implications for enzyme function and evolution.
    Sohn J; Grant RA; Sauer RT
    J Biol Chem; 2010 Oct; 285(44):34039-47. PubMed ID: 20739286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric activation of DegS, a stress sensor PDZ protease.
    Sohn J; Grant RA; Sauer RT
    Cell; 2007 Nov; 131(3):572-83. PubMed ID: 17981123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes.
    Endrizzi JA; Beernink PT
    Protein Sci; 2017 Nov; 26(11):2221-2228. PubMed ID: 28833948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric regulation of DegS protease subunits through a shared energy landscape.
    Mauldin RV; Sauer RT
    Nat Chem Biol; 2013 Feb; 9(2):90-6. PubMed ID: 23201899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of Peb4 exhibit "mother's arms" chain model: a molecular dynamics study.
    Dantu SC; Khavnekar S; Kale A
    J Biomol Struct Dyn; 2017 Aug; 35(10):2186-2196. PubMed ID: 27434141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.
    Townsend PD; Rodgers TL; Glover LC; Korhonen HJ; Richards SA; Colwell LJ; Pohl E; Wilson MR; Hodgson DR; McLeish TC; Cann MJ
    J Biol Chem; 2015 Sep; 290(36):22225-35. PubMed ID: 26187469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical shift imprint of intersubunit communication in a symmetric homodimer.
    Falk BT; Sapienza PJ; Lee AL
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9533-8. PubMed ID: 27466406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis of Glycogen Biosynthesis Regulation in Bacteria.
    Cifuente JO; Comino N; Madariaga-Marcos J; López-Fernández S; García-Alija M; Agirre J; Albesa-Jové D; Guerin ME
    Structure; 2016 Sep; 24(9):1613-22. PubMed ID: 27545622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved activation cluster is required for allosteric communication in HtrA-family proteases.
    de Regt AK; Kim S; Sohn J; Grant RA; Baker TA; Sauer RT
    Structure; 2015 Mar; 23(3):517-526. PubMed ID: 25703375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the synthesis of FMN in prokaryotic organisms.
    Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steric clashes with bound OMP peptides activate the DegS stress-response protease.
    de Regt AK; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3326-31. PubMed ID: 25733864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.
    James KA; Verkhivker GM
    PLoS One; 2014; 9(11):e113488. PubMed ID: 25427151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the sigmaE stress response by DegS: how the PDZ domain keeps the protease inactive in the resting state and allows integration of different OMP-derived stress signals upon folding stress.
    Hasselblatt H; Kurzbauer R; Wilken C; Krojer T; Sawa J; Kurt J; Kirk R; Hasenbein S; Ehrmann M; Clausen T
    Genes Dev; 2007 Oct; 21(20):2659-70. PubMed ID: 17938245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric coupling via distant disorder-to-order transitions.
    Eginton C; Cressman WJ; Bachas S; Wade H; Beckett D
    J Mol Biol; 2015 Apr; 427(8):1695-704. PubMed ID: 25746672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues.
    Strawn R; Melichercik M; Green M; Stockner T; Carey J; Ettrich R
    PLoS Comput Biol; 2010 Jun; 6(6):e1000801. PubMed ID: 20532206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective allosteric coupling in core chemotaxis signaling complexes.
    Li M; Hazelbauer GL
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15940-5. PubMed ID: 25349385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Many local motions cooperate to produce the adenylate kinase conformational transition.
    Daily MD; Phillips GN; Cui Q
    J Mol Biol; 2010 Jul; 400(3):618-31. PubMed ID: 20471396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of allosteric communication in the human PPARalpha-RXRalpha heterodimer.
    Venäläinen T; Molnár F; Oostenbrink C; Carlberg C; Peräkylä M
    Proteins; 2010 Mar; 78(4):873-87. PubMed ID: 19847917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.