These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27556803)

  • 61. Using GPUs for the exact alignment of short-read genetic sequences by means of the Burrows-Wheeler transform.
    Salavert Torres J; Blanquer Espert I; Domínguez AT; Hernández García V; Medina Castelló I; Tárraga Giménez J; Dopazo Blázquez J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1245-56. PubMed ID: 22450827
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Automatic ICD-10 coding algorithm using an improved longest common subsequence based on semantic similarity.
    Chen Y; Lu H; Li L
    PLoS One; 2017; 12(3):e0173410. PubMed ID: 28306739
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sub-similarity matching based on data mining with dihedral angles.
    Cimen EB; Akin F; Demirer RM
    Int J Comput Biol Drug Des; 2013; 6(1-2):131-45. PubMed ID: 23428479
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multiple alignment of DNA sequences with MAFFT.
    Katoh K; Asimenos G; Toh H
    Methods Mol Biol; 2009; 537():39-64. PubMed ID: 19378139
    [TBL] [Abstract][Full Text] [Related]  

  • 65. BatMis: a fast algorithm for k-mismatch mapping.
    Tennakoon C; Purbojati RW; Sung WK
    Bioinformatics; 2012 Aug; 28(16):2122-8. PubMed ID: 22689389
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A deep neural network based hierarchical multi-label classification method.
    Feng S; Zhao C; Fu P
    Rev Sci Instrum; 2020 Feb; 91(2):024103. PubMed ID: 32113459
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Using the Sadakane compressed suffix tree to solve the all-pairs suffix-prefix problem.
    Rachid MH; Malluhi Q; Abouelhoda M
    Biomed Res Int; 2014; 2014():745298. PubMed ID: 24834435
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Simplified Description of Child Tables for Sequence Similarity Search.
    Frith MC; Shrestha AMS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2067-2073. PubMed ID: 29994365
    [TBL] [Abstract][Full Text] [Related]  

  • 69. pblat: a multithread blat algorithm speeding up aligning sequences to genomes.
    Wang M; Kong L
    BMC Bioinformatics; 2019 Jan; 20(1):28. PubMed ID: 30646844
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Indexing huge genome sequences for solving various problems.
    Sadakane K; Shibuya T
    Genome Inform; 2001; 12():175-83. PubMed ID: 11791236
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Two Efficient Techniques to Find Approximate Overlaps between Sequences.
    Haj Rachid M
    Biomed Res Int; 2017; 2017():2731385. PubMed ID: 28293632
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analysis of common k-mers for whole genome sequences using SSB-tree.
    Choi JH; Cho HG
    Genome Inform; 2002; 13():30-41. PubMed ID: 14571372
    [TBL] [Abstract][Full Text] [Related]  

  • 73. FRESCO: Referential compression of highly similar sequences.
    Wandelt S; Leser U
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1275-88. PubMed ID: 24524158
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Alignment of biological sequences with quality scores.
    Na JC; Roh K; Apostolico A; Park K
    Int J Bioinform Res Appl; 2009; 5(1):97-113. PubMed ID: 19136367
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Whole genome assembly from 454 sequencing output via modified DNA graph concept.
    Blazewicz J; Bryja M; Figlerowicz M; Gawron P; Kasprzak M; Kirton E; Platt D; Przybytek J; Swiercz A; Szajkowski L
    Comput Biol Chem; 2009 Jun; 33(3):224-30. PubMed ID: 19477687
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A compression method for DNA.
    Du S; Li J; Bian N
    PLoS One; 2020; 15(11):e0238220. PubMed ID: 33237908
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.
    Zhang S; Chen Y
    PLoS One; 2016; 11(8):e0160435. PubMed ID: 27487245
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Voting algorithms for the motif finding problem.
    Liu X; Ma B; Wang L
    Comput Syst Bioinformatics Conf; 2008; 7():37-47. PubMed ID: 19642267
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A fast algorithm for determining the best combination of local alignments to a query sequence.
    Conant GC; Wagner A
    BMC Bioinformatics; 2004 May; 5():62. PubMed ID: 15149555
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up pairwise genetic map comparison.
    De Mattéo L; Holtz Y; Ranwez V; Bérard S
    PLoS One; 2018; 13(12):e0208838. PubMed ID: 30589848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.