BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2557 related articles for article (PubMed ID: 27556805)

  • 1. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Hassler J; Ziyar A; Li P; Wright Z; Menon R; Omenn GS; Cavalcoli JD; Kaufman RJ; Sartor MA
    PLoS One; 2014; 9(7):e100864. PubMed ID: 24991935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genome-wide non-canonical spliced regions and analysis of biological functions for spliced sequences using Read-Split-Fly.
    Bai Y; Kinne J; Ding L; Rath EC; Cox A; Naidu SD
    BMC Bioinformatics; 2017 Oct; 18(Suppl 11):382. PubMed ID: 28984182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying Isoform-Specific mRNA Recruitment to Polyribosomes with Frac-seq.
    Martinez-Nunez RT; Sanford JR
    Methods Mol Biol; 2016; 1358():99-108. PubMed ID: 26463379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response.
    Lee K; Tirasophon W; Shen X; Michalak M; Prywes R; Okada T; Yoshida H; Mori K; Kaufman RJ
    Genes Dev; 2002 Feb; 16(4):452-66. PubMed ID: 11850408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress.
    Back SH; Lee K; Vink E; Kaufman RJ
    J Biol Chem; 2006 Jul; 281(27):18691-706. PubMed ID: 16644724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TopHat: discovering splice junctions with RNA-Seq.
    Trapnell C; Pachter L; Salzberg SL
    Bioinformatics; 2009 May; 25(9):1105-11. PubMed ID: 19289445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.
    Li J; Chen Z; Gao LY; Colorni A; Ucko M; Fang S; Du SJ
    Mech Dev; 2015 Aug; 137():33-44. PubMed ID: 25892297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ChimPipe: accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data.
    Rodríguez-Martín B; Palumbo E; Marco-Sola S; Griebel T; Ribeca P; Alonso G; Rastrojo A; Aguado B; Guigó R; Djebali S
    BMC Genomics; 2017 Jan; 18(1):7. PubMed ID: 28049418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IRcall and IRclassifier: two methods for flexible detection of intron retention events from RNA-Seq data.
    Bai Y; Ji S; Wang Y
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S9. PubMed ID: 25707295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining Arabidopsis thaliana RNA-seq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a.
    Gulledge AA; Roberts AD; Vora H; Patel K; Loraine AE
    Am J Bot; 2012 Feb; 99(2):219-31. PubMed ID: 22291167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpliceJumper: a classification-based approach for calling splicing junctions from RNA-seq data.
    Chu C; Li X; Wu Y
    BMC Bioinformatics; 2015; 16 Suppl 17(Suppl 17):S10. PubMed ID: 26678515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.
    Zhang Y; Lameijer EW; 't Hoen PA; Ning Z; Slagboom PE; Ye K
    Bioinformatics; 2012 Feb; 28(4):479-86. PubMed ID: 22219203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global and unbiased detection of splice junctions from RNA-seq data.
    Ameur A; Wetterbom A; Feuk L; Gyllensten U
    Genome Biol; 2010; 11(3):R34. PubMed ID: 20236510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMMSplicer: a tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data.
    Dimon MT; Sorber K; DeRisi JL
    PLoS One; 2010 Nov; 5(11):e13875. PubMed ID: 21079731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer.
    Liu Q; Chen C; Shen E; Zhao F; Sun Z; Wu J
    Genomics; 2012 Mar; 99(3):178-82. PubMed ID: 22226708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SplicingCompass: differential splicing detection using RNA-seq data.
    Aschoff M; Hotz-Wagenblatt A; Glatting KH; Fischer M; Eils R; König R
    Bioinformatics; 2013 May; 29(9):1141-8. PubMed ID: 23449093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events.
    Denti L; Rizzi R; Beretta S; Vedova GD; Previtali M; Bonizzoni P
    BMC Bioinformatics; 2018 Nov; 19(1):444. PubMed ID: 30458725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread splicing of repetitive element loci into coding regions of gene transcripts.
    Darby MM; Leek JT; Langmead B; Yolken RH; Sabunciyan S
    Hum Mol Genet; 2016 Nov; 25(22):4962-4982. PubMed ID: 28171598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed primer extension sequencing: A targeted RNA-seq method that enables high-precision quantitation of mRNA splicing isoforms and rare pre-mRNA splicing intermediates.
    Gildea MA; Dwyer ZW; Pleiss JA
    Methods; 2020 Apr; 176():34-45. PubMed ID: 31121301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 128.